

Database Systems
Using Oracle

A Simplified Guide to SQL and PL/SQL

Second Edition

(Updated for Oracle9i)

Nilesh Shah
Associate Professor, CIS Department

DeVry University, North Brunswick, New Jersey
Senior Systems Analyst, IT Department

Monroe College, Bronx, New York

ShahFMv3.qxd 4/16/04 12:07 PM Page i

ShahFMv3.qxd 4/16/04 12:07 PM Page ii

Copyright © 2016 Pearson India Education Services Pvt. Ltd

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128,
formerly known as TutorVista Global Pvt. Ltd, licensee of Pearson Education in South Asia.

No part of this eBook may be used or reproduced in any manner whatsoever without the
publisher’s prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher
reserves the right to remove any material in this eBook at any time.

ISBN 978-93-325-4972-2
eISBN 978-93-325-7309-3

Head Office: A-8 (A), 7th Floor, Knowledge Boulevard, Sector 62, Noida 201 309, Uttar
Pradesh, India.
Registered Office: 4th Floor, Software Block, Elnet Software City, TS-140, Block 2 & 9, Rajiv
Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.
Fax: 080-30461003, Phone: 080-30461060
www.pearson.co.in, Email: companysecretary.india@pearson.com

To my two special boys,
Naman, 12

(an honor student and an excellent basketball player)
and

Navan (Jinku), 6
(for reading my book at the age of 4)

To my wife,
Prena

(for her support)

To my parents,
Dhiraj and Hansa
(for their sacrifice)

ShahFMv3.qxd 4/16/04 12:07 PM Page iii

ShahFMv3.qxd 4/16/04 12:07 PM Page iv

This page is intentionally left blank

Contents

FOREWORD by Alex Ephrem, Ph.D. xviii

FOREWORD by John W. Weber xx

PREFACE xxii

The Reader xxii
The Text xxii
The Software xxiii
Using the Text xxiii
Acknowledgments xxiv

Part 1: Database Concepts 1

CHAPTER 1 DATABASE CONCEPTS: A RELATIONAL APPROACH 1

Database: An Introduction 1
Relationships 2
Database Management System (DBMS) 3
The Relational Database Model 5
Integrity Rules 8
Theoretical Relational Languages 8

Relational Algebra 9
Applications of Relational Algebra 14
Relational Calculus 15
Final Note 17

In a Nutshell 17
Exercise Questions 18

CHAPTER 2 DATABASE DESIGN: DATA MODELING
AND NORMALIZATION 20

Data Modeling 21
Dependency 24
Database Design 26

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page v

vi Contents

Normal Forms 26
Anomalies 26
First Normal Form (1NF) 27
Second Normal Form (2NF) 28
Third Normal Form (3NF) 28

Dependency Diagrams 28
Conversion from 1NF to 2NF 29
Conversion from 2NF to 3NF 30

Denormalization 32
Another Example of Normalization 32

1NF to 2NF (Removing Partial Dependencies) 32
2NF to 3NF (Removing Transitive Dependencies) 32
Summary 32

In a Nutshell 34
Exercise Questions 35

Part 2: Oracle SQL 37

CHAPTER 3 ORACLE9i: AN OVERVIEW 37

Personal Databases 37
Demand on Client and Network 38
Table Locking 39
Client Failure 39
Transaction Processing 39

Client/Server Databases 39
Demand on Client and Network 40
Table Locking 40
Client Failure 40
Transaction Processing 41

Oracle9i: An Introduction 41
The Environment 43
Structured Query Language (SQL) 43
Logging in to 44

Commands 46
Oracle Errors and Online Help 49
Alternate Text Editors 49

Worksheet 51
54

Sample Databases 56
The Indo–US (IU) College Student Database 56
The NamanNavan (N2) Corporation Employee Database 61

In a Nutshell 64
Exercise Questions 65
Lab Activity 66

Á

iSQL * Plus
SQL * Plus

SQL * Plus
SQL * Plus

SQL * Plus

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page vi

Contents vii

CHAPTER 4 ORACLE TABLES: DATA DEFINITION LANGUAGE (DDL) 67

Naming Rules and Conventions 68
Data Types 68

Varchar2 69
Char 69
Number 70
Date 70

Constraints 72
Types of Constraints 72
Naming a Constraint 72
Defining a Constraint 73

Creating an Oracle Table 76
STORAGE Clause in CREATE TABLE 78

Displaying Table Information 79
Viewing a User’s Table Names 79
Viewing a Table’s Structure 80
Viewing Constraint Information 80
Viewing Tablespace Information 82
COMMENT on Tables and Columns 82

Altering an Existing Table 82
Adding a New Column to an Existing Table 83
Modifying an Existing Column 84
Adding a Constraint 84
Dropping a Column (Oracle8i Onward) 86
Dropping a Constraint 87
Enabling/Disabling Constraints 88
Renaming a Column (Oracle9i Version 9.2 Onward) 88
Renaming a Constraint (Oracle9i Version 9.2 Onward) 88
Modifying Storage of a Table 88

Dropping a Table 89
Renaming a Table 89
Truncating a Table 89
Oracle’s Various Table Types 90
Spooling 90
Error Codes 91
In a Nutshell 93
Exercise Questions 94
Lab Activity 96

CHAPTER 5 WORKING WITH TABLES: DATA MANAGEMENT
AND RETRIEVAL 97

Data Manipulation Language (DML) 97
Adding a New Row/Record 98

Rounding by INSERT 99

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page vii

viii Contents

Entering Null Values 100
Entering Default Values 100
Substitution Variables 100

Customized Prompts 102
Updating Existing Rows/Records 102
Deleting Existing Rows/Records 104
Retrieving Data from a Table 105

SELECT 106
DISTINCT Function 109
Column Alias 110
COLUMN Command 110
Concatenation 112

Arithmetic Operations 113
Order of Operation 113

Restricting Data with a WHERE Clause 114
Wild Cards 121

Sorting 122
Revisiting Substitution Variables 125
DEFINE Command 126
CASE Structure 127
In a Nutshell 128
Exercise Questions 129
Lab Activity 130

CHAPTER 6 WORKING WITH TABLES: FUNCTIONS AND GROUPING 132

Built-In Functions 132
Single-Row Functions 133
Group Functions 147

Grouping Data 149
HAVING Clause 151
Nesting Group Functions 153

In a Nutshell 153
Exercise Questions 153
Lab Activity 154

CHAPTER 7 MULTIPLE TABLES: JOINS AND SET OPERATORS 156

Join 157
Cartesian Product 157
Equijoin 158
Table Aliases 160
Additional Conditions 161
Nonequijoin 161
Outer Join 163
Self-Join 165

Á

Á

(*)

ShahFMv3.qxd 4/16/04 12:07 PM Page viii

Contents ix

Set Operators 166
Union 166
Union All 167
Intersect 169
Minus 169

In a Nutshell 171
Exercise Questions 171
Lab Activity 172

CHAPTER 8 SUBQUERIES: NESTED QUERIES 173

Subquery 174
Single-Row Subquery 174
Multiple-Row Subquery 181

Top-N Analysis 183
Important Note about Top-N Analysis 185

MERGE Statement 185
Correlated Subquery 185

EXISTS and NOT EXISTS Operators 186
In a Nutshell 188
Exercise Questions 189
Lab Activity 189

CHAPTER 9 ADVANCED FEATURES: OBJECTS, TRANSACTIONS,
AND DATA CONTROL 191

Views 191
Creating a View 192
Removing a View 195
Altering a View 195

Sequences 196
Modifying a Sequence 199
Dropping a Sequence 200

Synonyms 200
Index 201

Rebuilding an Index 203
ROWID Pseudocolumn 203
Transactions 204

Read Consistency and Locking 206
Locking Rows for Update 206
Controlling Access 207

Users and Roles 208
Object Privileges 209

In a Nutshell 212
Exercise Questions 212
Lab Activity 213

Á

Á

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page ix

x Contents

SQL REVIEW: SUPPLEMENTARY EXAMPLES 215

Script for Creation of Tables 216
Script for Insertion of Rows into Tables 217
Insertion of Rows with Substitution Variables 217

Alternate Method 217
Display all Customer Information 218
Display all Item Names and their Respective Unit Price 218
Display Unique Invoice Numbers from the INVITEM Table 218
Display Item Information with Appropriate Column Aliases 218
Display Item Name and Price Using Concatenation 218
Find the Total Value of Each Item Based on Quantity on Hand 218
Find Customers from Florida 218
Display Items with a Unit Price of at Least $5 218
Find Items with a Unit Price Between $2 and $5 219
Find Customers from the Tristate Area of New York, New Jersey,

and Connecticut 219
Find all Customers Whose Names Start with the Letter E 219
Find Items with the Letter W in their Name 219
Sort all Customers Alphabetically 219
Sort all Items in Descending Order by their Price 219
Sort all Customers by their State and also Alphabetically 219
Display all Customers from New Jersey Alphabetically 220
Display all Item Prices Rounded to the Nearest Dollar 220
Find the Payment Due Date if the Payment Is Due in Two Months

from the Invoice Date 220
Display Invoice Dates in “September 05, 2003” Format 220
Find the Total, Average, Highest, and Lowest Unit Prices 220
Display How Many Different Items Are Available for Customers 220
Count the Number of Items Ordered in Each Invoice 220
Find Invoices in which Three or More Items Are Ordered 220
Find all Possible Combinations of Customers and Items

(Cartesian Product) 221
Display all Item Quantities and Item Prices for Invoices 221
Find the Total Price for Each Invoice 221
Use an Outer Join to Display Items Ordered and Not Ordered 221
Display Invoices, Customer Names, and Item Names Together

(Multiple Joins) 221
Find Invoices with HAMMER as an Item 221
Find Invoices with HAMMER as an Item by Using a Subquery 221
Display the Items Ordered in Invoice Number 1001 (Subquery) 222
Find Items That Are Cheaper than NUT 222
Create a New Table for all New Jersey Customers Based on the

Existing CUSTOMER Table 222
Copy all New York Customers to the Newly Created

NJ_CUSTOMER Table 222
Rename NJ_CUSTOMER Table to NYNJ_CUSTOMER 222

ShahFMv3.qxd 4/16/04 12:07 PM Page x

Contents xi

Find Customers Who Are Not from New York or New Jersey
(Set Operator) 222

Delete Rows from the CUSTOMER Table that Are also in the
NYNJ_CUSTOMER Table 223

Find the Items with the Top-Three Prices 223
Find the Two Items with the Lowest Quantity on Hand 223
Create a Simple View with Item Names and Item Prices Only 223
Create a View that Displays Invoice Number and Customer Names for

New Jersey Customers 223
Create a Sequence that Can Be Used to Enter New Items into the

ITEM Table 223
Add a New Item into the ITEM Table with the

ITEMNUM_SEQ Sequence 224
Create a Synonym for the INVITEM Table 224
Create an Index File Based on Customer Name 224
Lock Customer Bayer’s Record to Update State and Phone Number 224
Give Everybody SELECT and INSERT Rights on Your ITEM Table 224
Revoke the INSERT Option on the ITEM Table from User BOND 224

Part 3: PL/SQL 225

CHAPTER 10 PL/SQL: A PROGRAMMING LANGUAGE 225

A Brief History of PL/SQL 226
Fundamentals of PL/SQL 227

Reserved Words 227
User-Defined Identifiers 227
Literals 228

PL/SQL Block Structure 228
Comments 230
Data Types 230

Character 231
Number 232
Boolean 233
Date 233

Other Data Types 233
NLS 233
LOB 233

Variable Declaration 234
Anchored Declaration 234

Nested Anchoring 235
NOT NULL Constraint for %TYPE Declarations 236

Assignment Operation 236
Bind Variables 237
Substitution Variables in PL/SQL 238
Printing in PL/SQL 239
Arithmetic Operators 240

ShahFMv3.qxd 4/16/04 12:07 PM Page xi

xii Contents

In a Nutshell 241
Exercise Questions 242
Lab Activity 243

CHAPTER 11 MORE ON PL/SQL: CONTROL STRUCTURES AND
EMBEDDED SQL 244

Control Structures 245
Selection Structure 245
Looping Structure 254

Nested Blocks 259
SQL in PL/SQL 260

SELECT Statement in PL/SQL 260
Data Manipulation in PL/SQL 262

INSERT Statement 262
DELETE Statement 262
UPDATE Statement 263

Transaction Control Statements 264
In a Nutshell 264
Exercise Questions 265
Lab Activity 266

CHAPTER 12 PL/SQL CURSORS AND EXCEPTIONS 267

Cursors 268
Types of Cursors 268

Implicit Cursors 268
Explicit Cursors 269

Declaring an Explicit Cursor 269
Actions on Explicit Cursors 270

Explicit Cursor Attributes 272
%ISOPEN 272
%FOUND 273
%NOTFOUND 273
%ROWCOUNT 274

Implicit Cursor Attributes 274
Cursor FOR Loops 274

Cursor FOR Loop Using a Subquery 276
SELECT FOR UPDATE Cursor 276
WHERE CURRENT OF Clause 277
Cursor with Parameters 277
Cursor Variables: An Introduction 279

REF CURSOR Type 279
Opening a Cursor Variable 280
Fetching from a Cursor Variable 280

Exceptions 280

Á

Á

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page xii

Contents xiii

Types of Exceptions 281
Predefined Oracle Server Exceptions 282
Nonpredefined Oracle Server Exceptions 283
User-Defined Exceptions 286
RAISE_APPLICATION_ERROR Procedure 287

More Sample Programs 289
In a Nutshell 289
Exercise Questions 294
Lab Activity 295

CHAPTER 13 PL/SQL COMPOSITE DATA TYPES: RECORDS, TABLES,
AND VARRAYS 296

Composite Data Types 296
PL/SQL Records 297

Creating a PL/SQL Record 297
Referencing Fields in a Record 298
Working with Records 298
Nested Records 299

PL/SQL Tables 300
Declaring a PL/SQL Table 300
Referencing Table Elements/Rows 301
Assigning Values to Rows in a PL/SQL Table 302
Built-In Table Methods 304
Table of Records 305

PL/SQL Varrays 306
In a Nutshell 309
Exercise Questions 311
Lab Activity 311

CHAPTER 14 PL/SQL NAMED BLOCKS: PROCEDURE, FUNCTION,
PACKAGE, AND TRIGGER 313

Procedures 314
Calling a Procedure 314
Procedure Header 315
Procedure Body 315
Parameters 315
Actual and Formal Parameters 316
Matching Actual and Formal Parameters 316

Functions 319
Function Header 319
Function Body 320
RETURN Data Types 320
Calling a Function 320
Calling a Function from an SQL Statement 323

Á

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page xiii

xiv Contents

Packages 323
Structure of a Package 324
Package Specification 324
Package Body 325

Triggers 328
BEFORE Triggers 330
AFTER Triggers 331
INSTEAD OF Trigger 333

Data Dictionary Views 334
In a Nutshell 335
Exercise Questions 336
Lab Activity 336

Part 4: Miscellaneous Topics 338

CHAPTER 15 ORACLE WITH JAVA: A TUTORIAL ON JDBC AND SQLj 338

Java: A Programming Language 339
JDBC 339

Importing Package or JDBC Classes 340
Loading JDBC Drivers 340
Connecting to the Oracle Database 340
Interacting with the Oracle Database 341
Closing Connection 344

Sun’s JDBC Driver and the Oracle Data Source 344
Creating a Data Source in the Windows Control Panel 344
Sample Java Code 345

OracleDriver and Oracle thin Driver 348
Setting Up oracle.jdbc.driver.OracleDriver for SDK1.4 or JBuilder8 348
Sample Java Code 350

Java Applet: Putting It All Together 351
SQLj 358

Configuring Oracle SQLj in JBuilder8 359
Creating an SQLj Project 359

Host Variables 361
SQLj Iterators 361

Named Iterator 361
Positional Iterator 363

PL/SQL from SQLj 364
In a Nutshell 365
Exercise Questions 366
Lab Activity 367

CHAPTER 16 ORACLE9i: ARCHITECTURE AND ADMINISTRATION 368

Database Administrator (DBA) 368
Oracle Architecture: An Overview 369

Á

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page xiv

Contents xv

Installation 374
Connecting to the Oracle9i Database 375
Instance and Database 377
Working with Oracle Enterprise Manager (OEM) 378

Tablespace with Storage Manager 378
User and Role with Security Manager 380

System Privileges 386
Oracle Data Dictionary 387
In a Nutshell 388
Exercise Questions 389

APPENDIX A SAMPLE DATABASES: TABLE DEFINITIONS 390

The Indo–US (IU) College Student Database 390
The NamanNavan (N2) Corporation Employee Database 393

APPENDIX B QUICK REFERENCE TO SQL AND PL/SQL SYNTAX 395

SQL Key Words 395
PL/SQL Key Words 396
SQL and PL/SQL Syntax 396

Creating a Table 397
Column-Level Constraint 397
Table-Level Constraint 397
Adding a Column to an Existing Table 397
Modifying an Existing Column 397
Adding a Constraint to a Table 397
Dropping a Column (Oracle8 Onward) 397
Setting a Column as Unused (Oracle8 Onward) 397
Dropping an Unused Column (Oracle8 Onward) 397
Renaming a Column (Oracle9i Onward) 398
Renaming a Constraint (Oracle9i Onward) 398
Dropping a Table 398
Renaming a Table 398
Truncating a Table 398
Inserting a New Row into a Table 398
Customized Prompts 398
Updating Rows 398
Deleting Rows 398
Dropping a Constraint 398
Enabling|Disabling a Constraint 399
Retrieving Data from a Table 399
DEFINE Command 399
DECODE Function 399
CASE Structure 399
Joining Tables: Equijoin or Outer Join 399
Set Operation 399
SELECT Subquery 400

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page xv

xvi Contents

Creating a Table Using a Subquery 400
Inserting a Row Using a Subquery 400
Inserting into Multiple Tables 400
Updating Using a Subquery 400
Deleting Using a Subquery 400
Top-N Query 400
MERGE Statement 401
Creating a View 401
Altering a View 401
Dropping a View 401
Creating a Sequence 401
Modifying a Sequence 401
Creating a Synonym 402
Dropping a Synonym 402
Creating an Index 402
Rebuilding an Index 402
Locking Rows for Update 402
Creating a User 402
Changing a User’s Password 402
Granting System Privileges 402
Granting Object Privileges 403
Revoking Privileges 403
PL/SQL Anonymous Block 403
PL/SQL Variable/Constant Declaration 403
Anchored Variable Declaration 403
Assignment Operation 403
IF-THEN-END IF 403
IF-THEN-ELSE-END IF 404
IF-THEN-ELSIF-END IF 404
CASE Statement 404
Basic Loop 404
WHILE Loop 404
FOR Loop 405
Bind/Host Variable 405
SELECT-INTO in PL/SQL 405
Explicit Cursor Declaration 405
Opening an Explicit Cursor 405
Fetching a Row from an Explicit Cursor 405
Closing an Explicit Cursor 405
Cursor FOR Loop 405
Cursor FOR Loop with a Subquery 405
WHERE CURRENT OF Clause 406
Cursor with SELECT-FOR UPDATE 406
Cursor with Parameters 406
REF CURSOR Type 406
Opening a Cursor Variable 406
Fetching from a Cursor Variable 406
EXCEPTION Section 406

ShahFMv3.qxd 4/16/04 12:07 PM Page xvi

Contents xvii

PRAGMA EXCEPTION_INIT Directive 407
RAISE_APPLICATION_ERROR Procedure 407
Creating a PL/SQL Record 407
Declaring a PL/SQL Table 407
Declaring a PL/SQL Varray 407
PL/SQL Procedure 407
Calling a Procedure 407
Recompiling a Procedure 408
PL/SQL Function 408
PL/SQL Package Specification 408
PL/SQL Package Body 408
PL/SQL Trigger 408
Creating a Tablespace 409
Starting Up an Instance 409
Shutting Down an Instance 409
Creating a User from the Command Line with Various Clauses 409
Dropping a User 409
Logging into from the Command Line 409

APPENDIX C REFERENCE TO COMMANDS 410

Editing Commands 416
File-Related Commands 416

APPENDIX D OBJECT ORIENTATION 417

An Object 417
SQL Queries for Objects 418

Retrieving Data from an Object Table 418
Inserting a Row into an Object Table 419
Updating an Object 419
Deleting Rows from on Object Table 419

APPENDIX E WHAT’S NEW IN ORACLE9i SQL AND PL/SQL? 420

New Features in SQL 420
New Features in PL/SQL 423

APPENDIX F ADDITIONAL REFERENCES 425

Web Sites 425
Books and Other Published Material 426

INDEX 427

SQL * Plus
SQL * Plus

SQL * Plus

SQL * PLUS

ShahFMv3.qxd 4/16/04 12:07 PM Page xvii

Foreword
Alex Ephrem, Ph.D.

Computer science educators and IT administrators are—and, traditionally, have
been—faced with a common problem. In an industry characterized by rapid and
dramatic changes, the manager must determine how he or she can maintain state-of-
the-art skills among the IT staff. In a similar vein, the educator, must be able to
judge how students can be best prepared to work as professionals in a field that may
have gone through revolutionary transitions between the time that student first en-
tered college and the time that he or she graduates.

Certainly, a technical education must incorporate a strong foundation in the core
concepts of operating systems, file or database structure, computer architecture, and
general programming theory.The difficulty arises when the educator seeks to select an
application or a development platform to use for introducing these concepts and for
providing students with practical, functional, and marketable hands-on skills. As the
ones responsible for such preparation, we often look for a package that not only will
give students the most vivid demonstration of the theoretical concepts we are attempt-
ing to portray but will also offer students an opportunity to use that knowledge almost
immediately in a variety of environments. In addition, we seek packages that are in
heavy and common demand, with a “track record” of success, reliability, and longevity.

The area of relational database management systems (RDBMS) is crowded
with a vast number of quality RDBMS products. Only one, however, addresses the
many concerns the educator has for students. That product, of course, is Oracle. It
has been on the market for more than 20 years, and it holds a major portion of the
market share, which accounts for Larry Ellison’s position among the world’s wealth-
iest men and Oracle’s position among the largest global corporations.There are ver-
sions of the product for nearly every hardware platform, from personal computers
through minicomputers and supercomputers, and for operating systems from DOS,
Windows, and Linux through MVS, OS/400, PICK, and the multitudinous flavors of
Unix. Of all the RDBMS systems available, Oracle is the one the student is most
likely to encounter on the job—and the one in which employers most eagerly seek
expert applicants and employees.

From an educator’s perspective, Oracle, as a truly relational database, incorpo-
rates virtually all the relational operations that any database theory course must en-
compass. This allows the student to actually see the results of such operations.

ShahFMv3.qxd 4/16/04 12:07 PM Page xviii

Foreword xix

Similarly, the instructor retains the flexibility to design customized exercises that
combine one, several, or all the standardized operations discussed in lectures on rela-
tional theory. In addition, Oracle’s ease of use allows the instructor to concentrate on
the purpose of the course rather than on how to utilize the RDBMS software.

Computer science has never been one of the “pure” sciences, concerned solely
with theoretical constructs. Like engineering, its concern and preparation are direct-
ly and fully aimed at the practical application of knowledge. In today’s economy, a
comprehensive grasp of database design, use, and implementation is a basic skill re-
quired of IT professionals, and as an educator and CIO, it is my opinion that any uni-
versity course or professional training seminar focusing on database concepts that
does not also provide the student with at least an introduction to Oracle is deficient.

Nilesh Shah’s Database Systems Using Oracle includes everything that both the
educator seeking to present essential database concepts and the student wishing to
learn Oracle, either in a guided classroom or an independent study approach, would
need. It is organized so that the beginner is presented with enough background to
quickly progress to a functional mastery of the more complex material, and the pro-
gression of topics and degree of coverage are comprehensive enough to meet the
needs of the demanding professional. In recognition of the necessity to go beyond
theory, numerous hands-on exercises are included, and examples are given of fea-
tures, such as Web interfaces to Oracle tables, from Oracle’s most recent versions.

For those of you who are first entering the world of RDBMS, the Shah text is
a reliable vehicle that will assist you in meeting your objectives and assure that you
finish with confidence in your ability.

To the database professional, the Shah text will give you a reference and guide
that you will use frequently.

To the university professor or professional trainer, the Shah text has given you
a uniquely flexible educational tool. With it, you can develop, plan, and implement
your course in a manner that will give your students the necessary academic under-
standing of core database concepts while simultaneously teaching them a hugely
marketable skill within the computer industry.

As a professor of computer science at Monroe College as well as that college’s
Senior Systems Analyst, Nilesh Shah has demonstrated the dual abilities of fully com-
prehending the broad range of complexities involved in database management as well
as the gift of presenting complex subject matter in an easily understandable format.To
the reader’s benefit, these abilities come across clearly in the text before you.

This new and expanded edition provides even greater depth of instruction in the
use of those elements that have resulted in the Oracle’s huge popularity. Additionally,
it adeptly covers a range of Oracle’s newest features and capabilities. Few texts can
genuinely be considered both a useful learning and reference tool for the experienced
professional as well as a comprehensive and understandable introduction for the data-
base beginner. With this text, Dr. Shah appears to have achieved that difficult union.

ALEX EPHREM, PH.D.
Senior Vice-President and Chief Information Officer

Monroe College

ShahFMv3.qxd 4/16/04 12:07 PM Page xix

Foreword
John W. Weber

Rarely does a text come along in the IT field that effectively blends the theoretical
framework of a topic with its practical application. Either a text focuses on purely
theoretical concepts that leave students lacking in real-world application, or it cov-
ers the “how-to” of a tool without stressing the theoretical foundation so important
to the students’ ultimate mastery of the tool.

In the field of relational database management systems (RDBMS), one book
stands out in its ability to blend theory and application. That book is Nilesh Shah’s
Database Systems Using Oracle.This book covers key foundational concepts, such as
the relational database model, entity–relationship modeling, relationship types, ex-
posure to both relational algebra and relational calculus concepts, and normaliza-
tion. This text also effectively provides the necessary application to creating,
maintaining, and querying a database through the Structured Query Language
(SQL). Professor Shah’s book provides students with thorough examples, tables of
key commands and functions, data types and their uses, as well as other key infor-
mation.The appendices provide a good reference for novices and experienced users
alike in regards to SQL syntax.

This second edition also provides more extensive coverage of topics that relate
to the Oracle9i database environment. Two new topics have been introduced: em-
bedded SQL, and Java/Oracle connectivity through Java Database Connectivity
(JDBC) and SQLj. A new chapter that addresses nested queries has also been
added, as well as an appendix that introduces object relational database manage-
ment systems (ORDBMS). In addition, the treatment of various topics has been en-
hanced since the last edition, particularly in the area of PL/SQL.

Professor Shah’s teaching style is particularly well received by his students be-
cause of his effective ability to take complex ideas and present them in an under-
standable manner. His book has been designed in this same style. His explanations
are clear, concise, and presented in a way that even the most inexperienced database
user can understand. This is further evidenced by the “In a Nutshell ” section of
each chapter, which succinctly presents each key concept in a series of bullet points.

Similar to his classroom environment, Prof. Shah has also incorporated activi-
ties that are crucial to the students’ application of the material. Each chapter con-
tains lab activities that allow each student to apply the concepts covered in the

Á

ShahFMv3.qxd 4/16/04 12:07 PM Page xx

Foreword xxi

Oracle 9i database environment, thus giving each student practice in using those
skills that are in demand in the workplace today.

As an educator, one is not concerned solely if a teacher is teaching but, rather, if
the students are learning. Professor Shah is consistently interested in the progress of
his students, which is evident in this book. As a user of this book, I am sure you also
will find it to be a contributor to your success in your database coursework.

JOHN W. WEBER

Dean, Information Systems Programs
DeVry University

ShahFMv3.qxd 4/16/04 12:07 PM Page xxi

Preface

THE READER

The Relational Database Management System (RDBMS) is the most popular data-
base model today. Oracle Corporation has established the Oracle database product
as the prime database package in the world. Structured Query Language (SQL) is
the universal query language for relational databases. Programming Language ex-
tension to SQL (PL/SQL), an Oracle extension to SQL, brings all the benefits and
capabilities of a high-level programming language to the database environment.

This book is designed for use as a primary text in a database course at the col-
lege level or as a self-study guide for the information systems or business profes-
sional. With its in-depth coverage of relational database concepts, (Oracle’s
version of SQL), and PL/SQL, the text serves as an introductory guide as well as a
future reference resource.The proper term for Oracle SQL is but throughout
this text, the term Oracle SQL is simply referred to as SQL. The text can be used in
a course that concentrates on database design and utilizes SQL to complement it. It
also makes a perfect textbook with which to teach SQL only. Another use of this
book is for an advanced database management system course, in which more ad-
vanced features of SQL, PL/SQL, connectivity through Java, and database adminis-
tration are emphasized. In a classroom environment, it is not possible to cover all 16
chapters in one semester. At our campus, we cover Chapters 1 through 9 in the in-
troductory database systems course. In the advanced database course, the SQL por-
tion is reviewed, and then Chapters 10 through 16 are covered. The book serves as a
great resource to expand on the topics learned in the classroom.

THE TEXT

The second edition contains more examples, added screen shots, a new chapter on Java
with Oracle, new SQL and PL/SQL topics/statements (e.g., MERGE, INSERT ALL,
INSERT FIRST, correlated subqueries, CASE, Searched CASE, and INSTEAD OF
trigger), and more built-in functions. The first part of the book provides adequate

SQL *,

SQL *

ShahFMv3.qxd 4/16/04 12:07 PM Page xxii

Preface xxiii

knowledge of relational concepts and database design techniques to allow students to
design and implement accurate and effective database systems. The second part con-
centrates on the primary nonprocedural relational database language, SQL, which is
supported by most relational database software packages.The book primarily concen-
trates on Oracle9i and points out those features that were not available in previous re-
leases. (In reality, the SQL part of the book can be utilized in Oracle release 7.x, 8, 8i, or
9i.) The third part of the textbook is devoted to the procedural language PL/SQL,
which is Oracle’s proprietary language extension to SQL. PL/SQL features data en-
capsulation, error handling, and information hiding, which are typical capabilities of a
high-level programming language. The fourth part of the textbook introduces the ar-
chitecture and administration of Oracle9i as well as connectivity to Oracle from Java.

Throughout the text, the general syntax of SQL and PL/SQL are supplement-
ed by simple examples, screen captures, and illustrations. Each chapter includes a
brief summary, exercise questions, and lab activities. The textbook is supported by
sample databases—one a typical college’s student database with demographic,
schedule, and registration information, and the other a corporation’s employee
database with employees’ demographic and job-related data. In most cases, the ex-
amples are based on one of the sample databases and the lab activity on the other,
to test a student’s ability to apply queries in a different scenario. A separate section
with a third sample database is included at the end of the SQL portion of the text-
book, which summarizes most SQL statements covered in Chapters 3 through 9.

Because the book is primarily designed as a college text, it also includes (ex-
clusively for instructors) answers to the exercise questions as well as SQL queries
and PL/SQL blocks for the lab activities. The script to create both sample databases
is also included for the instructors.

THE SOFTWARE

Oracle comes in many flavors. At your business or college laboratory, Oracle might
be implemented in a Windows, Unix, Linux, Solaris, or Novell Netware environ-
ment. The version of Oracle might vary from 8 to 8i to 9i. The beauty of this text is
its versatility. The SQL and PL/SQL features covered here work with all versions,
and the exceptions are pointed out in the individual topics wherever necessary.

The reader is advised to join the Oracle Technology Network (OTN) at
www.otn.oracle.com. One of the benefits of being a registered OTN user is access to
free downloads of Enterprise and a personal version of Oracle9i software. Oracle
support, however, is not free!

USING THE TEXT

This text is designed for sequential reading from Chapter 1 through Chapter 16. If you
are familiar with relational database concepts, you may skip the first two chapters.

ShahFMv3.qxd 4/16/04 12:07 PM Page xxiii

xxiv Preface

From my personal experience with students, Chapter 2, on data modeling and nor-
malization, helps students tremendously in designing effective databases. You will
need access to a computer system to practice SQL statements and PL/SQL pro-
grams from Chapters 3 through 14. The fourth part of the text contains material on
the architecture and administration of Oracle and on creating Java applications/ap-
plets with connectivity to an Oracle database. Many popular commands
are also covered in Appendix C. Appendix E details what is new in 9i SQL and
PL/SQL. The reader must perform exercise questions and labs at the end of each
chapter before moving on to the next chapter. Whether a programming language is
procedural or nonprocedural, you cannot learn it just by reading about it. You need
to practice to master the material.

ACKNOWLEDGMENTS

I would like to thank Kate Hargett and her staff for their support in publishing this
text. It is my pleasure to work with a prestigious publishing company such as Pren-
tice Hall. I thank Petra Recter for her help and guidance with the first edition. Good
luck with your new position, Petra!

I am also grateful to my employers—DeVry University, North Brunswick,
New Jersey; and Monroe College, Bronx, New York. I would like to mention three
individuals in particular: Dean Bhupinder Sran at DeVry, who asked me to write my
first book when we could not find a suitable text for our database systems course;
Dr. Alex Ephrem at Monroe, who supported and encouraged me throughout the
text’s development process (Dr. Ephrem has the Japanese-language copy of this text
on his desk as an exhibit!); and John Weber, Dean of Information Systems at DeVry,
for taking the time to write an excellent foreword for the text.

I would like to thank all my students, past and present, for being themselves.
Without my students, I would not be in a position to write a book. Their enthusiasm
in the classroom, respect toward me, and desire to learn inspired me to take up this
project. I would like to single out two students at DeVry; James McClaran, for cre-
ating ERD for the sample databases used in this text, and Heillyn Viquez, for retyp-
ing almost 200 coding examples from existing screenshots.

I also thank all the reviewers, especially Richard J. Staron, for their honest
comments, which enabled me to address deficiencies of the first edition and to cre-
ate a better text.

Finally, I would like to thank my family for their understanding and patience
during the entire process: my 12-year-old son, Naman, an honor student and an ex-
cellent basketball player, who possesses the first copy of my book; my 6-year-old
son, Navan, a login helper, who wants to move to Philadelphia after the book is fin-
ished so he can watch Allen Iverson play basketball everyday; my wife, Prena, for
putting up with me; and last but not least, my parents, Dhiraj and Hansa, for the sac-
rifice they have made in their life by sending their only son to the United States for
a better future.

NILESH SHAH

SQL * Plus

ShahFMv3.qxd 4/16/04 12:08 PM Page xxiv

PART 1
DATABASE
CONCEPTS

1

Database Concepts:

A Relational Approach

IN THIS CHAPTER . . .

� You will learn about basic database terminology.
� Relational database concepts are covered.
� The Database Management System (DBMS) and its functions are outlined.
� Integrity rules and types of relationships are explained.
� Two theoretical relational languages for data retrieval, relational algebra

and relational calculus, are introduced.

DATABASE: AN INTRODUCTION

A database is an electronic store of data. It is a repository that stores information
about different “things” and also contains relationships among those different
“things.” Let us examine some of the basic terms used to describe the structure of a
database:

� A person, place, event, or item is called an entity.
� The facts describing an entity are known as data. For example, if you were a

registrar in a college, you would like to have all the information about the
students. Each student is an entity in such a scenario.

ShahCh01v3.qxd 4/16/04 11:44 AM Page 1

2 Chap. 1 Database Concepts: A Relational Approach

� Each entity can be described by its characteristics, which are known as att-
ributes. For example, some of the likely attributes for a college student are
student identification number, last name, first name, phone number, Social
Security number, gender, birthdate, and so on.

� All the related entities are collected together to form an entity set. An enti-
ty set is given a singular name. For example, the STUDENT entity set con-
tains data about students only. All related entities in the STUDENT entity
set are students. Similarly, a company keeps track of all its employees in an
entity set called EMPLOYEE.The EMPLOYEE entity set does not contain
information about the company’s customers, because it wouldn’t make any
sense.

� A database is a collection of entity sets. For example, a college’s database
may include information about entities such as student, faculty, course, term,
course section, building, registration information, and so on.

� The entities in a database are likely to interact with other entities. The inter-
actions between the entity sets are called relationships. The interactions are
described using active verbs. For example, a student takes a course section
(CRSSECTION), so the relationship between STUDENT and CRSSEC-
TION is takes. A faculty member teaches in a building, so the relationship
between FACULTY and BUILDING is teaches.

RELATIONSHIPS

The database design requires you to create entity sets, each describing a set of re-
lated entities. The design also requires you to establish all the relationships be-
tween the entity sets within the database. The different database management
software packages handle the creation and use of relationships in different man-
ners. Depending on the type of interaction, the relationships are classified into
three categories:

1. One-to-one relationship: A one-to-one relationship is written as 1:1 in
short form. It exists between two entity sets, X and Y, if an entity in entity
set X has only one matching entity in entity set Y, and vice versa. For ex-
ample, a department in a college has one chairperson, and a chairperson
chairs one department in a college. An employee manages one depart-
ment in a company, and only one employee manages a department.

2. One-to-many relationship: A one-to-many relationship is written as 1:M.
It exists between two entity sets, X and Y, if an entity in entity set X has
many matching entities in entity set Y but an entity in entity set Y has only
one matching entity in entity set X. In such a situation, a 1:M relationship ex-
ists between entity sets X and Y. For example, a faculty teaches for one divi-
sion in a college, but a division has many faculty members. The relationship

ShahCh01v3.qxd 4/16/04 11:44 AM Page 2

Database Management System (DBMS) 3

between DIVISION and FACULTY is 1:M. An employee works in a de-
partment, but a department has many employees. The relationship be-
tween DEPARTMENT and EMPLOYEE is 1:M.

3. Many-to-many relationship: A many-to-many relationship is written as
M:N or M:M. It exists between two entity sets, X and Y, if an entity in en-
tity set X has many matching entities in entity set Y and an entity in entity
set Y has many matching entities in entity set X. For example, a student
takes many courses, and many students take a course. An employee works
on many projects, and a project has many employees.

Many times, students find it difficult to determine the type of a relationship.
You need to ask the following two questions to make the determination:

1. Does an entity in entity set X have more than one matching entity in enti-
ty set Y?

2. Does an entity in entity set Y have more than one matching entity in enti-
ty set X?

If your answers to both questions are “No,” the relationship is a 1:1 relationship.
If one of the answers is “Yes” and the other answer is “No,” it is a 1:M relation-
ship. If both answers are “Yes,” you have an M:N relationship. Later, you will see
that the M:N relationship is not easy to implement and is decomposed into two
1:M relationships.

DATABASE MANAGEMENT SYSTEM (DBMS)

The database system consists of the following components (see Fig. 1-1):

� A database management System (DBMS) software package such as Mi-
crosoft Access, Visual Fox Pro, Microsoft SQL-Server, or Oracle.

� A user-developed and implemented database or databases that includes ta-
bles, a data dictionary, and other database objects.

� Custom applications such as data-entry forms, reports, queries, blocks, and
programs.

� Computer hardware—personal computers, minicomputers, and mainframes
in a network environment.

� Software—an operating system and a network operating system.
� Personnel—a database administrator, a database designer/analyst, a pro-

grammer, and end users.

Data are the raw materials. Information is processed, manipulated, collected,
or organized data. The information is produced when a user uses the applications to

ShahCh01v3.qxd 4/16/04 11:44 AM Page 3

4 Chap. 1 Database Concepts: A Relational Approach

User

Applications DBMS Database

OS Software

Hardware

Figure 1-1 Database system.

transform data managed by the DBMS. The database system is utilized as a deci-
sion-making system and is also referred to as an information system (IS).

A DBMS based on the relational model is also known as a Relational Data-
base Management System (RDBMS). An RDBMS not only manages data but is
also responsible for other important functions:

� It manages the data and relationships stored in the database. It creates a
Data Dictionary as a user creates a database.The Data Dictionary is a system
structure that stores Metadata (data about data).The Metadata include table
names, attribute names, data types, physical space, relationships, and so on.

� It manages all day-to-day transactions.
� It performs bookkeeping duties, so the user has data independence at the

application level. The applications do not have information about data
characteristics.

� It transforms logical data requests to match physical data structures.When a
user requests data, the RDBMS searches through the Data Dictionary, fil-
ters out unnecessary data, and displays the results in a readable and under-
standable form.

� It allows users to specify validation rules. For example, if only M and F are
possible values for the attribute gender, users can set validation rules to
keep incorrect values from being accepted.

� It secures access through passwords, encryption, and restricted user rights.
� It provides backup and recovery procedures for physical security of data.
� It allows users to share data with data-locking capabilities.
� It provides import and export utilities to use data created in other database

or spreadsheet software or to use data in other software.

ShahCh01v3.qxd 4/16/04 11:44 AM Page 4

The Relational Database Model 5

� It enables users to join tables to view information stored in different tables
within the database. The user is able to design a database with less redun-
dancy, which means fewer data-entry errors, fewer data corrections, better
data integrity, and a more efficient database.

THE RELATIONAL DATABASE MODEL

The need for data is always present. In the computer age, the need to represent data
in an easy-to-understand, logical form has led to many different models, such as the
relational model, the hierarchical model, the network model, and the object model.
Because of its simplicity in design and ease in retrieval of data, the relational data-
base model has been very popular, especially in the personal computer environment.

E. F. Codd developed the relational database model in 1970. The model is
based on mathematical set theory, and it uses a relation as the building block of the
database. The relation is represented by a two-dimensional, flat structure known as
a table. The user does not have to know the mathematical details or the physical as-
pects of the data, but the user views the data in a logical, two-dimensional structure.
The database system that manages a relational database environment is known as a
Relational Database Management System (RDBMS). Some of the popular rela-
tional database systems are Oracle9i by Oracle Corporation, Microsoft Access 2000,
and Microsoft Visual Fox Pro 6.0.

A table is a matrix of rows and columns in which each row represents an entity
and each column represents an attribute. In other words, a table represents an entity
set as per database theory, and it represents a relation as per relational database the-
ory. In daily practice, the terms table, relation, and entity set are used interchangeably.

Figure 1-2 shows six relational tables—PROJ2002, PROJ2003, PRJPARTS,
PARTS, DEPARTMENT, and EMPLOYEE. PROJ2002 has three columns and five
entities. PROJ2003 contains three columns and four entities. PRJPARTS has three
columns and five entities. In relational terminology, a row is also referred to as a
tuple. It rhymes with couple. In a relational database, it is easy to establish relation-
ships between tables. For example, it is possible to find the name of the vendor who
supplies parts for a project.

Each column in a relation or a table corresponds to a column of the relation,
and each row corresponds to an entity. The number of columns in a table is called
the degree of the relation. For example, if a table has four columns, then the table is
of degree 4.

It is assumed that there is no predefined order to rows of a table and that no
two rows have the exact same set of values. The order of columns is also immaterial,
but correct order is used in the illustrations.

The set of all possible values that a column may have is called the domain of
that column.Two domains are the same only if they have the same meaning and use.
ProjNo, PartNo, DeptNo, and EmpNo are columns with numeric values, but their
domains are different.

ShahCh01v3.qxd 4/16/04 11:44 AM Page 5

6 Chap. 1 Database Concepts: A Relational Approach

PROJ2003

ProjNo Loc Customer

1 Miami Stocks

2 Orlando Allen

3 Trenton Smith

4 Charlotte Jones

PRJPARTS

ProjNo PartNo Qty

1 11 20

2 33 5

3 11 7

1 22 10

2 11 3

PARTS

PartNo PartDesc Vendor Cost

11 Nut Richards 19.95

22 Bolt Black 5.00

33 Washer Mobley 55.99

DEPARTMENT

DeptNo DeptName

10 Production

20 Supplies

30 Marketing

EMPLOYEE

EmpNo Ename DeptNo ProjNo Salary

101 Carter 10 1 25000

102 Albert 20 3 37000

103 Breen 30 6 50500

104 Gould 20 5 23700

105 Barker 10 7 75000

PROJ2002

ProjNo Loc Customer

1 Miami Stocks

3 Trenton Smith

5 Phoenix Robins

6 Edison Shaw

7 Seattle Douglas

Figure 1-2 Relational database tables.

Terms like tuple and degree are used here because they are relational data-
base terms, but in reality, these terms are not used in workplace.

Figure 1-3 shows a simple comparison between terminology used in relational
databases and file systems. Many times, terms are borrowed from the file system for
the relational field, and vice versa.

Relational Terminology File System Terminology

Entity Set or Table or Relation File

Entity or Row or Tuple Record

Attribute or Column Field

Figure 1-3 Terminology comparison.

ShahCh01v3.qxd 4/16/04 11:44 AM Page 6

The Relational Database Model 7

A key is a minimal set of columns used to uniquely define any row in a table. If
a single column can be used to describe each row, there is no need to use two columns
as a key. For example, in PROJ2002, ProjNo uniquely defines each row, and in
PARTS, PartNo uniquely defines each row. In PRJPARTS, none of the columns de-
fines each row uniquely by itself. The column ProjNo is not unique, and PartNo is
not unique either. In such a table, a combination of columns can be used as a key.
For example, ProjNo and PartNo together make a key for PRJPARTS table. When
a single column is used as a unique identifier, it is known as a primary key. When a
combination of columns is used as a unique identifier, it is known as a composite pri-
mary key or, simply, as a composite key.

Sometimes, a more human approach is used to identify or retrieve a row from
a table because it is not possible to remember primary key values such as the em-
ployee number, part number, department number, and so on. For example, a ven-
dor’s name, an employee’s last name, a book’s title, or an author’s name can be used
for the data retrieval. Such a key is known as a secondary key.

If none of the columns is a candidate for the primary key in a table, sometimes
database designers use an extra column as a primary key instead of using a compos-
ite key. Such a key is known as a surrogate key. For example, columns such as cus-
tomer identification number, term identification number, or vendor number can be
added in a table to describe a customer, term, or vendor, respectively.

In a relational database, tables are related to each other through a common
column.A column in a table that references a column in another table is known as a
foreign key. For example, the PartNo column in PRJPARTS is a foreign key column
that references the PartNo column in PARTS.

Figure 1-4 shows typical illustrations showing the notation used for tables in a
relational database.The table name is followed by a list of columns within parenthe-
ses. The primary key or composite primary key columns are underlined. In Oracle,
the primary key, composite key, or surrogate key is defined as a primary key only,
and a foreign key in a table can reference a primary key column only.

Oracle uses key words PRIMARY KEY to define a primary, composite, or
surrogate key. In Oracle tables, only primary and foreign keys are defined. Sec-
ondary key is not part of Oracle’s table structure, but it is a column used in search
operations. Later, you will learn to use Oracle’s Data Dictionary to find table keys
and other table information.

Figure 1-4 Notation used for tables.

PROJ2002 (ProjNo, Loc, Customer)

PROJ2003 (ProjNo, Loc, Customer)

PRJPARTS (ProjNo, PartNo, Qty)

PARTS (PartNo, PartDesc, Vendor, Cost)

DEPARTMENT (DeptNo, DeptName)

EMPLOYEE (EmpNo, Ename, DeptNo, ProjNo, Salary)

ShahCh01v3.qxd 4/16/04 11:44 AM Page 7

8 Chap. 1 Database Concepts: A Relational Approach

INTEGRITY RULES

In any database managed by an RDBMS, it is very important that the data in the un-
derlying tables be consistent. If consistency is compromised, the data are not usable.
This need led the pioneers of database field to formulate two integrity rules:

1. Entity integrity: No column in a primary key may be null. The primary
key provides the means of uniquely identifying a row or an entity. A null
value means a value that is not known, not entered, not defined, or not ap-
plicable. A zero or a space is not considered to be a null value. If the pri-
mary key value is a null value in a row, we do not have enough information
about the row to uniquely identify it. The RDBMS software strictly fol-
lows the entity integrity rule and does not allow users to enter a row with-
out a unique value in the primary key column.

2. Referential integrity: A foreign key value may be a null value, or it must
exist as a value of a primary key in the referenced table.

Referential integrity is not fully supported by all commercially available sys-
tems, but Oracle supports it religiously! Oracle does not allow you to declare a for-
eign key if it does not exist as a primary key in another table. It allows you to leave
the foreign key column value as a null. If a user enters a value in the foreign key col-
umn, Oracle cross-references the referenced primary key column in the other table
to confirm the existence of such a value.

It is not a good practice to use null values in any non–primary key columns, be-
cause this results in extra overhead on the system’s part in search operations.The pro-
grammers or query users have to add extra measures to include or exclude rows with
null values. In certain cases, it is not possible to avoid null values. For example, an em-
ployee does not have a middle initial, an employee is hired but does not have an as-
signed department, or a student’s major is undefined. In Oracle, a default value can be
assigned to a column, and a user does not have to enter a value for that column.

THEORETICAL RELATIONAL LANGUAGES

E. F. Codd suggested two theoretical relational languages to use with the relational
model:

1. Relational algebra, a procedural language.
2. Relational calculus, a nonprocedural language.

Third-generation high-level compiler languages can be used to manipulate data
in a table, but they can only work with one row at a time. In contrast, the relational
languages can work on the entire table or on a group of rows. The multiple-row

ShahCh01v3.qxd 4/16/04 11:44 AM Page 8

Theoretical Relational Languages 9

manipulation does not even need a looping structure! The relational languages pro-
vide more power with a very little coding. Codd proposed these languages to embed
them in other host languages for more processing capability and more sophisticated
application development. In the database systems available today, nonprocedural
Structured Query Language (SQL) is used as a data-manipulation sublanguage. The
theoretical languages have provided the basis for SQL.

Relational Algebra

Relational algebra is a procedural language, because the user accomplishes desired
results by using a set of operations in a sequence. It uses set operations on tables to
produce new resulting tables.These resulting tables are then used for subsequent se-
quential operations. In Oracle, all operation names are not actually used as pro-
gramming terms, and most of these operations do not create a new resulting table, as
shown in the following examples using relational algebra.

The nine operations used by relational algebra are:

1. Union.
2. Intersection.
3. Difference.
4. Projection.
5. Selection.
6. Product.
7. Assignment.
8. Join.
9. Division.

Union. The union of two tables results in retrieval of all rows that are in
one or both tables. The duplicate rows are eliminated from the resulting table. The
resulting table does not contain two rows with identical data values. There is a basic
requirement to perform a union operation on two tables:

� Both tables must have the same degree.
� The domains of the corresponding columns in two tables must be same.

Such tables are said to be union compatible. In mathematical set theory, a
union can be performed on any two sets, but in relational algebra, a union can be
performed only on union-compatible tables.

Suppose we want to see all the projects from years 2002 and 2003.We obtain it
by performing a union on the PROJ2002 and PROJ2003 tables as given in
Figure 1-2.

1 ́ 2

ShahCh01v3.qxd 4/16/04 11:44 AM Page 9

10 Chap. 1 Database Concepts: A Relational Approach

If we call the resulting table TABLE_A, the operation can be denoted by

TABLE_A = PROJ2002 � PROJ2003

Intersection. The intersection of two tables produces a table with rows
that are in both tables. The two tables must be union compatible to perform an in-
tersection on them.

If we use the same two tables that were used in the union operation, the inter-
section will give us the projects that appear in the year 2002 and in the year 2003.
Let us call the resulting table, which is produced by the intersection operation,
TABLE_B:

TABLE_B = PROJ2002 Ω PROJ2003

1 Æ 2

Difference. The difference of two tables produces a table with rows that
are present in the first table but not in the second table. The difference can be per-
formed on union-compatible tables only.

If we find the difference of the same two tables used in the previous oper-
ations and create TABLE_C, it will have projects for the year 2002 that are not proj-
ects for the year 2003:

TABLE_C = PROJ2002 – PROJ2003

1-2

TABLE_A

ProjNo Loc Customer

1 Miami Stocks

2 Orlando Allen

3 Trenton Smith

4 Charlotte Jones

5 Phoenix Robins

6 Edison Shaw

7 Seattle Douglas

TABLE_B

ProjNo Loc Customer

1 Miami Stocks

3 Trenton Smith

TABLE_C

ProjNo Loc Customer

5 Phoenix Robins

6 Edison Shaw

7 Seattle Douglas

ShahCh01v3.qxd 4/16/04 11:44 AM Page 10

Theoretical Relational Languages 11

Now, just as in mathematics, is not equal to If we perform the
same operation to find projects from the year 2003 that did not exist in year 2002,

TABLE_D = PROJ2003 – PROJ2002

the resulting TABLE_D will look like this:

B - A.A - B

Projection. The projection operation allows us to create a table based on
desirable columns from all existing columns in a table. The undesired columns are
ignored. The projection operation returns the “vertical slices” of a table. The projec-
tion is indicated by including the table name and a list of desired columns:

TABLE_E = PARTS (PartDesc, Cost)

Selection. The selection operation selects rows from a table based on a
condition or conditions. The conditional operators and
the logical operators (AND, OR, NOT) are used along with columns and values to
create conditions. The selection operation returns “horizontal slices” from a table.

Let us apply the selection (Sel) operation to the PARTS table:

TABLE_F = Sel (PARTS: Cost>10.00)

1= , 6 7 , 7 , 7 = , 6 , 6 =2

The resulting table has the same number of columns as the original table but
fewer rows. The rows that satisfy the given condition are returned.

Product. A product of two tables is a combination everything in both ta-
bles. It is also known as a Cartesian product. It can cause huge results with big tables.
If the first table has x rows and the second table has y rows, the resulting product has

TABLE_D

ProjNo Loc Customer

2 Orlando Allen

4 Charlotte Jones

TABLE_E

PartDesc Cost

Nut 19.95

Bolt 5.00

Washer 55.99

TABLE_F

PartNo PartDesc Vendor Cost

11 Nut Richards 19.95

33 Washer Mobley 55.99

ShahCh01v3.qxd 4/16/04 11:44 AM Page 11

12 Chap. 1 Database Concepts: A Relational Approach

rows. If the first table has m columns and the second table has n columns, the
resulting product has columns.

For simplicity, let us take two tables with one column each and perform the
product operation on them:1 # 2

m + n
x # y

TABLE_G = EMPLOYEE • DEPARTMENT

DEPARTMENT

DeptName

Production

Supplies

Marketing

EMPLOYEE

Ename

Carter

Albert

TABLE_G

Ename DeptName

Carter Production

Carter Supplies

Carter Marketing

Albert Production

Albert Supplies

Albert Marketing

In this example, EMPLOYEE has two rows and DEPARTMENT three rows,
so TABLE_G has rows. EMPLOYEE has one column and DEPART-
MENT one column, so TABLE_G has columns.

Assignment. This operation creates a new table from existing tables. We
have been doing it throughout all the other operations. Assignment gives us an
ability to name new tables that are based on other tables. Note that assignment is
not an Oracle term.

For example,

TABLE_A = PROJ2002 � PROJ2003
TABLE_C = PROJ2002 – PROJ2003

Join. The join is one of the most important operations because of its ability
to get related data from a number of tables. The join is based on common set of val-
ues, which does not have to have the same name in both tables but does have to
have the same domain in both tables. When a join is based on equality of value, it is

1=2

1 + 1 = 2
2 # 3 = 6

ShahCh01v3.qxd 4/16/04 11:44 AM Page 12

Theoretical Relational Languages 13

known as a natural join. In Oracle, you will learn about the natural join, or equijoin,
and also about other types of joins, such as outer join, nonequijoin, and self-join,
that are based on the operators other than the equality operator.

For example, if we are interested in employee information along with depart-
ment information, a join can be carried out using the EMPLOYEE and DEPART-
MENT tables shown in Figure 1.2. The DeptNo column is the common column in
both tables and will be used for the join condition:

TABLE_H = join (EMPLOYEE, DEPARTMENT : DeptNo = DeptNo)

The expression is read as “join a row in the EMPLOYEE table with a row in
the DEPARTMENT table, where the DeptNo value in the EMPLOYEE table is
equal to the DeptNo value in the DEPARTMENT table.”

The join operation is an overhead on the system, because it is accomplished
using a series of operations. A product is performed first, which results in
rows. A selection is performed next to select rows where the DeptNo values are
equal. Finally, a projection is performed to eliminate duplicate DeptNo columns.

Division. The division operation is the most difficult operation to compre-
hend. It is not as simple as division in mathematics. In relational algebra, it identifies
rows in one table that have a certain relationship to all rows in another table. Let us
consider the following two tables:

5 # 3 = 15

TABLE_H

EmpNo Ename DeptNo ProjNo Salary DeptName

101 Carter 10 1 25000 Production

102 Albert 20 3 37000 Supplies

103 Breen 30 6 50500 Marketing

104 Gould 20 5 23700 Supplies

105 Barker 10 7 75000 Production

PROJ

ProjNo

1

2

3

PRJPARTS

ProjNo PartNo

1 11

2 33

3 11

1 22

2 11

ShahCh01v3.qxd 4/16/04 11:44 AM Page 13

14 Chap. 1 Database Concepts: A Relational Approach

Suppose we want to find out which parts are used in every project. We have to
divide (/) PRJPARTS by PROJ:

TABLE_I = PRJPARTS / PROJ

The columns of TABLE_I are those from the dividend PRJPARTS that are
not in the divisor PROJ. The rows of TABLE_I are a subset of the projection PRJ-
PARTS (PartNo). The row (PartNo) is in TABLE_I if and only if (ProjNo, PartNo)
is in the dividend PRJPARTS for every value of (ProjNo) in the divisor PROJ.

Summary. The nine operations provide users with a sufficient set of opera-
tions to work with the relational databases. Some of the operations are combina-
tions of other operations, as we saw in the case of the join operation, but such
operations are very useful in actual practice. In later chapters on Oracle, you will
find the actual query statements used to accomplish the different operations out-
lined here. You will learn to perform these operations using Oracle’s SQL.

Applications of Relational Algebra

Relational algebra is a procedural language in the sense that a user is required to
use a series of operations to obtain a certain result.This language has its capabilities
and limitations.

Problem 1

Referring to the tables in Figure 1.2, which employee is working on a project in Miami
during the year 2003?
Solution

A = join(PROJ2003, EMPLOYEE : ProjNo = ProjNo)
B = Sel(A : Loc = ‘Miami’)
C = B(Ename)

Alternative solution

A = Sel(PROJ2003 : Loc = ‘Miami’)
B = join(EMPLOYEE, A : ProjNo = ProjNo)
C = B(Ename)

In these solutions,Table C will have one entry, Carter, an employee who works
on project 1 in Miami. Relational algebra is called a procedural language, because a
user has to perform a series of operations to achieve the desired result.

TABLE_I

PartNo

11

ShahCh01v3.qxd 4/16/04 11:44 AM Page 14

Theoretical Relational Languages 15

Problem 2

Referring to the tables in Figure 1.2, who has supplied parts for the project in Trenton?
Solution

D = PROJ2002 � PROJ2003

E = Sel(D : Loc = ‘Trenton’)

F = join(E, PRJPARTS : ProjNo = ProjNo)

G = join(F, PARTS : PartNo = PartNo)

H = G(Vendor)

The solution uses four tables from the database. First, the union operation is
performed to put all projects together.Then, the selection operation is performed to
find all rows for projects in Trenton. Next, the result is joined with the PRJPARTS
table to merge part number with project information. Then, the PARTS table is
merged with the resulting table to get part–vendor information. At last, the name of
the vendor is retrieved using projection, which returns Richards.

The solutions illustrated here show a fundamental weakness in relational alge-
bra as a programming language. For users who have not come across problems like
these before, the solutions are difficult to develop and comprehend. Relational alge-
bra cannot group related information together. Neither can it perform calculations
on numeric values or sort rows in any particular order. Printing information with
formatting is out of the question! The actual implementation of relational languages
is an integral part of fourth-generation query languages. These languages are sup-
ported by many other tools, which provide users with full application-development
capabilities.

Relational Calculus

Relational calculus is a nonprocedural language. The programmer specifies the data
requirement, and the system generates the operations needed to produce a table
with the required data. In this section, we will try to understand relational calculus
briefly with sample examples using the general syntax

Result = (column list) : Expression

The list of columns is on the left of the colon, and the expressions (and condi-
tions) are on the right.

Problem 3

Referring to the tables in Figure 1.2, find projects where part number 11 is used.
Solution

(r.ProjNo) : r in PRJPARTS and r.PartNo = 11

In this expression, r is known as a row variable. The expression is read as “ProjNo in
row r, where r is a row in the PRJPARTS table and PartNo in row r is 11.” Each row

ShahCh01v3.qxd 4/16/04 11:44 AM Page 15

16 Chap. 1 Database Concepts: A Relational Approach

in PRJPARTS is examined using the condition to the right of the colon. The resulting
table will contain project numbers 1, 3, and 2:

The solution for the same problem in relational algebra would look like this:

M = Sel (PRJPARTS : PartNo = 11)
N = M (ProjNo)

Problem 4

Referring to the tables in Figure 1.2, find employee names and salary for employees
who work in Production.
Solution

(r.Ename, r.Salary) : r in EMPLOYEE and
s in DEPARTMENT and
s.DeptName = ‘Production’ and
r.DeptNo = s.DeptNo

ProjNo

1

3

2

RESULT

Ename Salary

Carter 25000

Barker 75000

Problem 5

Referring to the tables in Figure 1.2, find employee names, department names, and
locations for projects in the year 2003 for all employees who are working on project 1.
Solution

(r.Ename, s.DeptName, t.Loc) : r in EMPLOYEE and
s in DEPARTMENT and
t in PROJ2003 and
r.ProjNo = 1 and
r.ProjNo = t.ProjNo and
r.DeptNo = s.DeptNo

RESULT

Ename DeptName Loc

Carter Production Miami

ShahCh01v3.qxd 4/16/04 11:44 AM Page 16

In a Nutshell . . . 17

The theoretical relational languages discussed in this chapter are the basis for
the commercially available relational languages. SQL is a nonprocedural query lan-
guage based on relational calculus that is supported by many relational database
systems.

Final Note

A relational database is an electronic data repository that is supposed to satisfy
users’ data requests correctly, quickly, and efficiently. Most end users execute appli-
cations that work on databases.The most important task for the database designer is
to create a properly designed database. If the database is not designed well, it will
not be implemented well. The result is a nightmare for application developers. Even
if the application is well written, a defective database may result in incorrect and
sometimes meaningless results.

In the first half of Chapter 2, we will study the fundamentals of database de-
sign and modeling techniques. In the second half, we will learn the normalization
process to control data redundancies. If you have learned a programming language
before, you should be familiar with the tools used in the program development
cycle. If you use a shortcut and create a wrong algorithm for a problem, you have to
start the cycle all over again to rectify your logic. Database design is also like pro-
gramming. The designing tools are aids for creating a “good” database. Remember
that the database is a collection of tables. Do not build individual tables; rather, de-
sign a database as a whole.

IN A NUTSHELL . . .

� A database is an electronic store of data.
� An entity is a person, place, event, or item.
� Data are the facts describing an entity.
� An entity’s characteristics are known as columns.
� An entity set is a collection of related entities.
� A database is a collection of entity sets.
� Relationships are interactions between entity sets.
� Three types of relationships are one-to-one (1:1), one-to-many (1:M), and

many-to-many (M:N or M:M).
� In a relational model, a row is known as a tuple.
� The degree is the number of columns in a table, and the domain is a set of all

possible values for a column.
� A primary key is a minimal set of columns used to uniquely define a row.

When a single column is used as a key, it is known as a primary key. When a

ShahCh01v3.qxd 4/16/04 11:44 AM Page 17

18 Chap. 1 Database Concepts: A Relational Approach

combination of columns is used as a key, it is known as a composite primary
key or a composite key.

� The foreign key is a column in a table that references a primary key in an-
other table.

� Two integrity rules of relational model are entity integrity (the primary key
may not be null) and referential integrity (the foreign key value may be null
or must exist as a primary key value in another table).

� Relational algebra is a theoretical procedural language for data retrieval. It
provides users with a set of operations such as union, intersection, differ-
ence, selection, projection, product, join, assignment, and division.

� Relational calculus is a nonprocedural relational language, which is the basis
for today’s popular relational database language Structured Query Language
(SQL).

EXERCISE QUESTIONS

1. Define the following terms:
a. Entity.
b. Entity set.
c. Attribute.
d. Tuple.
e. Domain.
f. Key.
g. Null.

2. What are two integrity rules of the relational model?
3. What are different types of keys? What is their use?
4. Identify the primary key and foreign key for the following tables. Also, specify the table

referenced by the foreign key. If a table does not have a foreign key, leave the entry
blank. (Note: Some tables have a composite primary key. Identify all composite key
columns for such tables.)

STUDENT (StudentId, Last, First, StartTerm, Birthdate, FacultyId, MajorId, Phone)
FACULTY (FacultyId, Name, RoomId, Phone, DeptId)
COURSE (CourseId, Title, Credits)
CRSSECTION (CsId, CourseId, Section, TermId, FacultyId, Day, RoomId)
REGISTRATION (StudentId, CsId, Midterm, Final)
ROOM (RoomType, RoomDesc)
TERM (TermId, TermDesc, StartDate, EndDate)
LOCATION (RoomId, Building, RoomNo, Capacity, RoomType)
MAJOR (MajorId, MajorDesc)
DEPARTMENT (DeptId, DeptName, FacultyId)

ShahCh01v3.qxd 4/16/04 11:44 AM Page 18

Chap. 1 Exercise Questions 19

5. Discuss different types of relationships, and provide examples.
6. What do we mean by union compatible? Which operations require tables to be union

compatible with each other?
7. State the difference between the following:

a. Union and intersection.
b. Product and join.
c. Selection and projection.

8. Using the tables given in Figure 1-2, the relational database notation of tables is

PROJ2002 (ProjNo, Loc, Customer)
PROJ2003 (ProjNo, Loc, Customer)
PARTS (PartNo, Vendor, Cost)
PRJPARTS (ProjNo, PartNo, Qty)
DEPARTMENT (DeptNo, DeptName)
EMPLOYEE (EmpNo, Ename, DeptNo, ProjNo, Salary)

Retrieve the following information by using a series of relational algebraic operations
and also by using a relational calculus statement:
a. All employee names.
b. All employees working in department 20.
c. All employees who are making $50,000 or more.
d. All employees who are working in department 20 and also making more than $25,000.
e. Vendors who supplied parts for the project in Miami during the year 2003.

Table Primary Key Foreign Key Tables Referenced

STUDENT
FACULTY
COURSE
CRSSECTION
REGISTRATION
ROOM
TERM
LOCATION
MAJOR
DEPARTMENT

ShahCh01v3.qxd 4/16/04 11:44 AM Page 19

2

Database Design:

Data Modeling and

Normalization

IN THIS CHAPTER . . .

� You will learn about database modeling techniques.
� You will work with symbols and E-R diagrams (ERD) for representation of

entities and relationships.
� Types of dependencies within a table are examined and illustrated by using

dependency diagrams.
� Reduction of data redundancy and the process of normalization are covered.

In Chapter 1, you learned about relational database management system
(RDBMS) concepts. You also learned about theoretical languages and operations
on tables. The relational model is very popular because of its simplicity. It shows
data to the user in a very simple, logical view as a two-dimensional table. Anyone
can create tables, but the strongest characteristic of the relational model is its ability
to establish relationships among tables, which helps to reduce redundancy. Your
queries are as good as the database you create. The first and foremost step in data-
base creation is database design, which involves a certain degree of common sense.
If the given list of columns describes different entities, you would create a separate
table for each entity type. You would use foreign keys to establish relationships. To
join two tables, you need at least one common or redundant column in both tables.
All situations are not the same. There are complex cases in which common sense

ShahCh02v3.qxd 4/16/04 11:46 AM Page 20

Data Modeling 21

Figure 2-1 Entity representation in an E-R diagram.

EMPLOYEE

does not do the job. Many proven modeling and design tools are available for a bet-
ter database design. In this chapter, you will learn about different pictorial methods,
techniques, and concepts to create a “near-perfect” database.

DATA MODELING

A model is a simplified version of real-life, complex objects. Databases are complex,
and data modeling is a tool to represent the various components and their relation-
ships. The entity-relationship (E-R) model is a very popular modeling tool among
many such tools available today. Many tools are available for data modeling with E-R.
All tools have some variations in representation of components. The E-R model
provides:

� An excellent communication tool.
� A simple graphical representation of data.

The E-R model uses E-R diagrams (ERD) for graphical representation of the
database components. An entity (or an entity set) is represented by a rectangle. The
name of the entity (set) is written within the rectangle. Some tools prefer to use up-
percase letters only for entities. The name of an entity set is a singular noun. For ex-
ample, EMPLOYEE, CUSTOMER, and DEPARTMENT are singular entity set
names (see Fig. 2-1).

A line represents relationship between the two entities.The name of the relation-
ship is an active verb in lowercase letters. For example, works, manages, and employs
are active verbs. Passive verbs can be used, but active verbs are preferable (see Fig. 2-2).

Figure 2-2 Representation of relationship in an E-R diagram.

1:1
manages

1:M
employs

M:N
contains

ShahCh02v3.qxd 4/16/04 11:46 AM Page 21

Figure 2-4 Cardinality.

EMPLOYEE DEPARTMENT
supervises

employs

(1,1) (1,1)

(1,N) (1,1)

INVOICE

FACULTYDIVISION

(1,N) (1,N)

ITEM
contains

22 Chap. 2 Database Design: Data Modeling and Normalization

The types of relationships (1:1, 1:M, and M:N) between entities are called conn-
ectivity or multiplicity. The connectivity is shown with vertical or angled lines next to
each entity, as shown in Figure 2-2. For example, an EMPLOYEE supervises a DE-
PARTMENT, and a DEPARTMENT has one EMPLOYEE supervisor.A DIVISION
contains many FACULTY members, but a FACULTY works for one DIVISION. An
INVOICE contains many ITEMs, and an ITEM can be in more than one INVOICE.

Let us put everything together and represent these scenarios with the E-R dia-
gram. Figure 2-3 shows entities, relationships, and connectivity.

The relationship between two entities can be given using the lower and upper
limits. This information is called the cardinality. The cardinality is written next to
each entity in the form (n, m), where n is the minimum number and m is the maxi-
mum number. For example, (1,1) next to EMPLOYEE means that an employee can
supervise a minimum of one and a maximum of one department. Similarly, (1,1)
next to DEPARTMENT says that one and only one employee supervises the de-
partment. The value (1,N) means a minimum of one and a maximum equal to any
number (see Fig. 2-4). Some modern tools do not show cardinality in an E-R diagram.

Figure 2-3 Entity, relationship, and connectivity.

EMPLOYEE DEPARTMENT
supervises

employs
DIVISION

INVOICE

FACULTY

ITEM
contains

ShahCh02v3.qxd 4/16/04 11:46 AM Page 22

Figure 2-5 Optional relationships.

CUSTOMER

(0,N) (0,N)

VIDEO
rents

Data Modeling 23

In reality, corporations set rules for the minimum and maximum values for cardinality.
A corporation may decide that a department must have a minimum of 10 employees
and a maximum of 25 employees, which results in cardinality of (10,25). A college
decides that a computer-science course section must have at minimum 5 students to
recover the cost incurred and at maximum 35 students, because the computer lab
contains only 35 terminals.An employee can be part of zero or more than one depart-
ment, and an item may not be in any invoice! These types of decisions are known as
business rules.

Figure 2-4 shows the E-R diagram with added cardinality. In real life, it is possi-
ble to have an entity that is not related to another entity at all times.The relationship
becomes optional in such a case. In the example of a video rental store, a customer
can rent video movies. In this case, there are times when the customer has not rented
any movie, and there are times when the customer has rented one or more movies.
Similarly, there can be a movie in the database that is or is not rented at a particular
time.These are called optional relationships and are shown with a small circle next to
the optional entity (see Fig. 2-5). The optional relationship can occur in 1:1, 1:M, or
M:N relationships, and it can occur on one or both sides of the relationship.

Figure 2-6 Composite entity and relational schema.

(1,N) (1,1) (1,1) (1,N)

has is a
INVOICE INVITEM ITEM

INVOICENO

INVOICEDATE

INVOICENO

ITEMNO

ITEMNO

ITEMNAME

In relational databases, many-to-many (M:N) relationships are allowed, but
they are not easy to implement. For example, an invoice has many items, and an item
can be in many invoices. Refer to the INVOICE and ITEM relationship in Figure 2-4.
At this point, you will be introduced to the relational schema, a graphical represen-
tation of tables, their column names, key components, and relations between the pri-
mary key in one table and the foreign key in another. You will also see the
decomposition of an M:N relationship into two 1:M relationships. The decomposi-
tion from M:N to 1:M involves a third entity, known as a composite entity or an ass-
ociative entity. The composite entity is created with the primary key from both
tables with M:N relationships.The new entity has a composite key, which is a combi-
nation of primary keys from the original two entities. In the E-R diagram, a com-
posite entity is drawn as a diamond within a rectangle (see Fig. 2-6). The composite

ShahCh02v3.qxd 4/16/04 11:46 AM Page 23

24 Chap. 2 Database Design: Data Modeling and Normalization

entity has a composite primary key with two columns, each of them being foreign
keys referencing the other two entities in the database. For example, the foreign key
INVOICENO in the INVITEM table references the INVOICENO column in the
INVOICE table, and the foreign key ITEMNO in the INVITEM table references
the ITEMNO column in the ITEM table.

In a database, there are entities that cannot exist by themselves. Such entities
are known as weak entities. In Chapter 3, you will be introduced to two different
sample databases. In the employee database of that chapter, there is an entity called
EMPLOYEE with employees’ demographic information and another entity called
DEPENDENT with information about each employee’s dependents. The DEPEN-
DENT entity cannot exist by itself. There are no dependents for an employee who
does not exist. In other words, you need the existence of an employee for his or her
dependent to exist in the database.The weak entities are shown by double-lined rec-
tangles (see Fig. 2-7).

Figure 2-7 Weak entity.

EMPLOYEE

(0,N) (1,1)

DEPENDENT
has

Some of the other elements considered in the database design are:

� Simple attributes—attributes that cannot be subdivided; for example, last
name, city, or gender.

� Composite attributes—attributes that can be subdivided, into atomic form;
for example, a full name can be subdivided into the last name, first name,
and middle initial.

� Single-valued attributes—attributes with a single value; for example, Em-
ployee ID, Social Security number, or date of birth.

� Multivalued attributes—attributes with multiple values; for example, degree
codes or course registration. The multivalued attributes have to be given
special consideration. They can be entered into one attribute with a value
separator mark, or they can be entered in separate attributes with names
like Course1, Course2, Course3, and so on. Alternatively, a separate, com-
posite entity can be created.

DEPENDENCY

In Chapter 1, you learned that the primary key in a table identifies an entity. Every
table in the database should have a primary key, which uniquely identifies an entity.
For example, PartNo is a primary key in the PARTS table, and DeptNo is a primary
key in the DEPARTMENT table. In Oracle, if you create a table and do not define

ShahCh02v3.qxd 4/16/04 11:46 AM Page 24

Dependency 25

its primary key, Oracle does not consider it to be an error. You should define a pri-
mary key for all tables for integrity of data. Each table has other columns that do
not make up the primary key for the table. Such columns are called the nonkey
columns. The nonkey columns are functionally dependent on the primary key col-
umn. For example, PartDesc and Cost in the PARTS table are dependent on the pri-
mary key PartNo, and DeptName is dependent on the primary key DeptNo in the
DEPARTMENT table.

Now, let us take a scenario as shown in Figure 2-8. The INVOICE table in
Figure 2-8 does not have any single column that can uniquely identify an entity. The
first choice would be InvNo. It is not a unique value in the table, however, because
an invoice may contain more than one item and there may be more than one entry
for an invoice. CustNo cannot be the primary key, because there can be many in-
voices for a customer and CustNo does not identify an invoice. ItemNo cannot be
the primary key either, because an item may appear in more than one invoice and
ItemNo does not describe an invoice. The table has a composite primary key, which
consists of InvNo and ItemNo. InvNo and ItemNo together make up unique values
for each row. All other columns that do not constitute the primary key are nonkey
columns, and they are dependent on the primary key.

INVOICE

InvNo InvDate CustNo ItemNo CustName ItemName ItemPrice Qty

1001 04/14/03 212 1 Starks Screw $2.25 5

1001 04/14/03 212 3 Starks Bolt $3.99 5

1001 04/14/03 212 5 Starks Washer $1.99 9

1002 04/17/03 225 1 Connors Screw $2.25 2

1002 04/17/03 225 2 Connors Nut $5.00 3

1003 04/17/03 239 1 Kapur Screw $2.25 7

1003 04/17/03 239 2 Kapur Nut $5.00 1

1004 04/18/03 211 4 Garcia Hammer $9.99 5

Figure 2-8 INVOICE table and its columns.

There are three types of dependencies in a table:

1. Total or full dependency: A nonkey column dependent on all primary key
columns shows total dependency.

2. Partial dependency: In partial dependency, a nonkey column is dependent
on part of the primary key.

3. Transitive dependency: In transitive dependency, a nonkey column is de-
pendent on another nonkey column.

For example, in the INVOICE table, ItemName and ItemPrice are nonkey
columns that are dependent only on a part of the primary key column ItemNo.They

ShahCh02v3.qxd 4/16/04 11:46 AM Page 25

26 Chap. 2 Database Design: Data Modeling and Normalization

are not dependent on the InvNo column. Similarly, the nonkey column InvDate is
dependent only on InvNo.They are partially dependent on the primary key columns.
The nonkey column CustName is not dependent on any primary key column but is
dependent on another nonkey column, CustNo. It is said to have transitive depend-
ency. The nonkey column Qty is dependent on both InvNo and ItemNo, so it is said
to have full dependency.

DATABASE DESIGN

Relational database design involves an attempt to synthesize the database structure
to get the “first draft.” The initial draft goes through an analysis phase to improve
the structure. More formal techniques are available for the analysis and improve-
ment of the structure. In the synthesis phase, entities and their relationships are
identified. The characteristics or the columns of all entities are also identified, and
the designer defines the domains for each column. The candidate keys are picked,
and primary keys are selected from them. The minimal set of columns is used as a
primary key. If one column is sufficient to uniquely identify an entity, there is no
need to select two columns to create a composite key.Avoid using names as primary
keys, and break down composite columns into separate columns. For example, a
name should be split into last name and first name. Once entities, columns, domains,
and keys are defined, each entity is synthesized by creating a table for it. A process
called normalization analyzes tables created by the synthesis process.

NORMAL FORMS

In Figure 2-8, data are repeated from row to row. For example, InvDate, CustNo, and
CustName are repeated for same InvNo. The ItemName is entered repeatedly from
invoice to invoice.There is a large amount of redundant data in a table with just eight
rows! Redundant data can pose a huge problem in databases. First of all, someone
has to enter the same data repeatedly. Second, if a change is made in one piece of the
data, the change has to be made in many places. For example, if customer Starks
changes his or her name to Starks-Johnson, you would go to the individual row in IN-
VOICE and make that change. The redundancy may also lead to anomalies.

Anomalies

A deletion anomaly results when the deletion of information about one entity leads
to the deletion of information about another entity. For example, in Figure 2-8, if an
invoice for customer Garcia is removed, information about item number 4 is also
deleted. An insertion anomaly occurs when the information about an entity cannot
be inserted unless the information about another entity is known. For example, if
the company buys a new item, this information cannot be entered unless an invoice

ShahCh02v3.qxd 4/16/04 11:46 AM Page 26

Normal Forms 27

is created for a customer with that new item. An update anomaly can occur if the
item price changes to a new price. The price change is valid after the change date,
but not before the change date.

Unnecessary and unwanted redundancy and anomalies are not appropriate in
databases. Such tables are in lower normal form. Normalization is a technique to re-
duce redundancy. It is a decomposition process to split tables. The splitting is per-
formed carefully so that no information is lost. The higher the normal form is, the
lower the redundancy. The table in Figure 2-8 is in first normal form (1NF).

First Normal Form (1NF)

A table is said to be in first normal form, or can be labeled 1NF, if the following con-
ditions exist:

� The primary key is defined. This includes a composite key if a single column
cannot be used as a primary key. In our INVOICE table, InvNo and ItemId
are defined as the composite primary key components.

� All nonkey columns show functional dependency on the primary key compo-
nents. If you know the invoice number and the item number, you can find out
the invoice date, customer number and name, item name and price, and quan-
tity ordered. For example, if and are known, then

and
� The table contains no multivalued columns. In a single-valued column, the

intersection of a row and a column returns only one value. In a normalized
table, the intersection of a row and a column is a single value. Some database
packages, such as Unidata and Prime Information, allow multiple values in a
column in a row, but Oracle does not. Figure 2-9 shows the INVOICE table
of Figure 2-8 in unnormalized form. In Figure 2-9, the ItemNo, ItemName,
ItemPrice, and Qty columns are multivalued.

CustName = Starks.212,
CustNo =ItemPrice = $1.99,ItemName = Washer,InvDate = 04/14/03,

ItemNo = 5InvNo = 1001

INVOICE

InvNo InvDate CustNo ItemNo CustName ItemName ItemPrice Qty

1001 04/14/03 212 1 Starks Screw $2.25 5

3 Bolt $3.99 5

5 Washer $1.99 9

1002 04/17/03 225 1 Connors Screw $2.25 2

2 Nut $5.00 3

1003 04/17/03 239 1 Kapur Screw $2.25 7

2 Nut $5.00 1

1004 04/18/03 211 4 Garcia Hammer $9.99 5

Figure 2-9 Unnormalized table with multivalued columns.

ShahCh02v3.qxd 4/16/04 11:46 AM Page 27

28 Chap. 2 Database Design: Data Modeling and Normalization

A table that is in 1NF may have redundant data.A table in 1NF does not show
data consistency and integrity in the long run. The normalization technique is used
to control and reduce redundancy and to bring the table to a higher normal form.

Second Normal Form (2NF)

A table is said to be in second normal form, or 2NF, if the following requirements
are satisfied:

� All 1NF requirements are fulfilled.
� There is no partial dependency.

As you already know, partial dependency exists in a table in which nonkey
columns are partially dependent on part of a composite key. Suppose a table is in
1NF and does not have a composite key. Is it in the second normal form also? Yes, it
is in 2NF, because there is no partial dependency. Partial dependency only exists in a
table with a composite key.

Third Normal Form (3NF)

A table is said to be in third normal form, or 3NF, if the following requirements are
satisfied:

� All 2NF requirements are fulfilled.
� There is no transitive dependency.

A table that has transitive dependency is not in 3NF, but it needs to be decom-
posed further to achieve 3NF. However, a table in 2NF that does not contain any
transitive dependency does not need any further decomposition and is automatical-
ly in 3NF.

Other, higher normal forms are defined in some database texts. Boyce–Codd
normal form (BCNF), fourth normal form (4NF), fifth normal form (5NF), and do-
main key normal form (DKNF) are not covered in this text. In the following section,
you will learn the normalization process by using dependency diagrams.

DEPENDENCY DIAGRAMS

A dependency diagram is used to show total (full), partial, and transitive dependen-
cies in a table:

� The primary key components are highlighted.They are in bold letters and in
boxes with a darker border. The primary key components are connected to
each other using a bracket.

� The total and functional dependencies are shown with arrows drawn above
the boxes.

ShahCh02v3.qxd 4/16/04 11:46 AM Page 28

Dependency Diagrams 29

Figure 2-10 Dependency diagram.

InvNo ItemNoInvDate CustNo ItemPrice QtyCustName

Partial Dependency Partial Dependency

Transitive
Dependency

ItemName

Figure 2-11 1NF-to-2NF decomposition.

InvNoINVOICE

ItemNoITEM

InvNo ItemNoINVITEM

� The partial and transitive dependencies are shown with arrows at the bottom
of the diagram.

Conversion from 1NF to 2NF

We see in Figure 2-10 that a composite key is in the table and 1NF-to-2NF conver-
sion is required. In this conversion, you remove all partial dependencies:

� First, write each primary key component on a separate line, because they will
become primary keys in two new tables. (Note: If a primary key component
does not have partial dependency on it, there is no need to write it on a sepa-
rate line. In other words, you don’t create a new table with that primary key.)

� Write the composite key on the third line. It will be the composite key in the
third table.

Figure 2-11 shows the decomposition of one table in 1NF into three tables in 2NF.
The reason behind the decomposition is moving columns with partial dependency to the
new table along with the primary key.If only one of the two primary key columns has non-
key columns dependent on it,you will create only one new table to remove the partial de-
pendency.The InvNo,CustNo,and CustName columns will move to the INVOICE table,

ShahCh02v3.qxd 4/16/04 11:46 AM Page 29

30 Chap. 2 Database Design: Data Modeling and Normalization

because they are partially dependent on InvNo. ItemName and ItemPrice will move to
the ITEM table, because they are partially dependent on ItemNo in Figure 2-10.The Qty
column stays in INVITEM, because it is totally dependent on the composite key. The
database will look like the one shown in Figure 2-12.

Figure 2-12 Tables in 2NF.

InvNo InvDate CustNo

ItemNo

InvNo ItemNo Qty

ItemName ItemPrice

CustName

Conversion from 2NF to 3NF

The database tables in 2NF (see Fig. 2-12) have no partial dependency, but the IN-
VOICE table still has transitive dependency:

� Move columns with the transitive dependency to a new table.
� Keep the primary key of the new table as a foreign key in the existing table.

In Figure 2-13, you see the decomposition from 2NF to 3NF to remove transi-
tive dependency. A new CUSTOMER table is created with CustNo as its primary
key. The CustNo column is kept in the INVOICE table as a foreign key to establish
a relationship between INVOICE and CUSTOMER tables. The final database in
3NF looks like the one shown in Fig. 2-14.

ShahCh02v3.qxd 4/16/04 11:46 AM Page 30

Dependency Diagrams 31

Figure 2-13 2NF-to-3NF decomposition.

CustNoCUSTOMER

InvNoINVOICE

ItemNoITEM

InvNo ItemNoINVITEM

Figure 2-14 Tables in 3NF.

InvNo InvDate CustNo

ItemNo ItemName ItemPrice

InvNo ItemNo Qty

CustNo CustName

ShahCh02v3.qxd 4/16/04 11:46 AM Page 31

32 Chap. 2 Database Design: Data Modeling and Normalization

DENORMALIZATION

The normalization process splits tables into smaller tables. These tables are joined
through common columns to retrieve information from different tables. The more ta-
bles you have in a database, the more joins are needed to get the desired information.
In a multiuser environment, it is a costly overhead, and system performance is affected.
Denormalization is the reverse process. It reduces the normal form, and it increases
data redundancy. With denormalization, the information is stored with duplicate data,
more storage is required, and anomalies and inconsistent data exist.The designer has to
weigh this against performance to come up with a good design and performance.

ANOTHER EXAMPLE OF NORMALIZATION

In Figure 2-15, a table is shown in 1NF. The table contains a composite key that is
composed of two columns, PlayerId and Year.This table contains each player’s year-
ly statistics as well as team information.A player may belong to different teams dur-
ing different years (it is assumed that a player belongs to one team during a year).

Looking at the table, the following dependencies exist:

� Total dependency—JerseyNum, PointsScoredInYear, GamesPlayed,TeamId,
TeamName, and TeamLoc columns are dependent on primary key columns
PlayerId and Year. A player may wear a different jersey number with same
team or with a different team. Player may play for different team every year.

� Partial dependency—PlayerName and BirthDate columns are dependent
on primary key column PlayerId only.

� Transitive dependency—TeamName and TeamLoc columns are dependent
on non–key column TeamId. Fig 2-16.

1NF to 2NF (Removing Partial Dependencies)

A new table is created with a primary key column that has partial dependency on it.
A new table is created with the PlayerId column as its primary key. The original
table stays as it is with columns showing total dependency.

2NF to 3NF (Removing Transitive Dependencies)

A new table is created with the TeamId column as its primary key. TeamName and
TeamLoc move to this new table. TeamId column also stays in the previous table as
a foreign key to reference the new table.

Summary

The normalization process is not very easy to understand. In my classroom, some
students find it very difficult. The process is based on common sense. A table is

ShahCh02v3.qxd 4/16/04 11:46 AM Page 32

33

P
la

y
e
ri

d
P
la

y
e
rn

a
m

e
Y

e
a
r

Je
rs

e
y
N

u
m

B
ir

th
D

a
te

P
o

in
ts

S
co

re
d

in
Y

e
a
r

G
a
m

e
sP

la
y
e
d

Te
a
m

id
Te

a
m

N
a
m

e
Te

a
m

Lo
c

1
JO

H
N

SO
N

20
01

32
4/

15
/1

98
0

15
0

5
1

M
U

ST
A

N
G

S
B

R
O

N
X

1
JO

H
N

SO
N

20
02

32
4/

15
/1

98
0

17
4

6
1

M
U

ST
A

N
G

S
B

R
O

N
X

1
JO

H
N

SO
N

20
03

32
4/

15
/1

98
0

11
5

5
1

M
U

ST
A

N
G

S
B

R
O

N
X

2
N

A
M

A
N

20
01

10
12

/2
/1

98
5

10
0

3
1

M
U

ST
A

N
G

S
B

R
O

N
X

2
N

A
M

A
N

20
02

10
12

/2
/1

98
5

14
9

6
2

D
EV

IL
S

PR
IN

C
ET

O
N

2
N

A
M

A
N

20
03

10
12

/2
/1

98
5

18
5

6
5

EA
G

LE
S

B
R

U
N

SW
IC

K

3
SH

A
W

20
01

11
5/

10
/1

98
6

99
5

4
B

EA
R

C
A

TS
FO

R
D

S

3
SH

A
W

20
02

11
5/

10
/1

98
6

97
6

4
B

EA
R

C
A

TS
FO

R
D

S

3
SH

A
W

20
03

3
5/

10
/1

98
6

11
5

6
6

K
IN

G
S

M
A

N
H

A
TT

A
N

4
A

LB
ER

T
20

03
33

5/
19

/1
98

3
29

3
3

B
U

LL
D

O
G

S
M

O
N

R
O

E

5
A

N
TH

O
N

Y
20

01
21

1/
19

/1
97

9
11

0
6

3
B

U
LL

D
O

G
S

M
O

N
R

O
E

5
A

N
TH

O
N

Y
20

02
21

1/
19

/1
97

9
78

4
3

B
U

LL
D

O
G

S
M

O
N

R
O

E

5
A

N
TH

O
N

Y
20

03
33

1/
19

/1
97

9
11

1
5

1
M

U
ST

A
N

G
S

B
R

O
N

X

6
R

IC
H

A
R

D
S

20
03

33
7/

10
/1

97
7

63
6

2
D

EV
IL

S
PR

IN
C

ET
O

N

7
R

O
B

ER
TS

20
03

55
6/

6/
19

81
44

6
5

EA
G

LE
S

B
R

U
N

SW
IC

K

8
JO

N
ES

20
01

2
12

/3
1/

19
81

12
3

6
6

K
IN

G
S

M
A

N
H

A
TT

A
N

8
JO

N
ES

20
02

2
12

/3
1/

19
81

10
0

6
4

B
EA

R
C

A
TS

FO
R

D
S

9
JO

R
D

A
N

20
03

23
2/

17
/1

98
6

10
1

2
1

M
U

ST
A

N
G

S
B

R
O

N
X

F
ig

ur
e

2-
15

Ta
bl

e
in

 1
N

F.

ShahCh02v3.qxd 4/16/04 11:46 AM Page 33

34 Chap. 2 Database Design: Data Modeling and Normalization

Figure 2-16 Tables in 2NF and 3NF.

PlayerId

PlayerId

PLAYER

PLAYERYEAR Year

JerseyNum

JerseyNum PointsScored
InYear

PointsScored
InYear

GamesPlayed

GamesPlayed

TeamId

TeamId

TeamName TeamLoc

PlayerName

1NF to 2NF

BirthDate

PlayerId

TeamId

PLAYER

TEAM TeamName TeamLoc

PlayerIdPLAYERYEAR Year

PlayerName

2NF to 3NF

BirthDate

supposed to describe one entity. If a table describes multiple entities, it needs to be
decomposed. When tables are decomposed, there should be enough foreign keys to
establish relationships among tables. You should not end up with a table that is not
related to any other table in the database. A player’s name has nothing to do with
the year or the team he or she plays for, so it depends on the player’s ID only. (In
professional sports like the NBA, there are players who have changed their name!
We have to treat those cases as exceptions, and we do not design something just to
support such exceptions.) How many points did Jordan scored in 2002? To get that
information, you need the player’s ID as well as the year. We find new things to be
complicated at first, but practice makes a man (or a woman) perfect.There is anoth-
er problem on normalization in the exercise section. Go ahead and give it a try.

IN A NUTSHELL . . .

� A model is a simplified version of real-life, complex objects.
� The entity-relationship (E-R) diagram is an excellent communication tool

that represents a database graphically.
� In an E-R diagram, an entity (set) is represented by a rectangle with the

name of the entity set written as an uppercase, singular noun.
� An E-R diagram represents a relationship as an active verb inside a dia-

mond-shaped box.

ShahCh02v3.qxd 4/16/04 11:46 AM Page 34

Chap. 2 Exercise Questions 35

� The types of relationships (1:1, 1:M, and M:N) are called connectivity.
� The cardinality shows the lower and the upper limit of a relationship.
� All entities are not related to each other at all times. Such a relationship is

known as an optional relationship. It can occur in 1:1, 1:M, and M:N rela-
tionships, and it can occur on one or both sides of the relationship.

� M:N relationships are complex to implement. Each M:N relationship is de-
composed into two 1:M relationships using a third entity, known as a com-
posite entity. A composite entity has a composite primary key, which is
combination of primary keys from the other two entities.

� Simple attributes cannot be divided, but composite attributes can be subdi-
vided.

� Attributes can be single valued or multivalued.
� All nonkey columns in a table are functionally dependent on the primary

key columns of the table.
� In partial dependency, a nonkey column is dependent on part of the com-

posite primary key.
� In transitive dependency, a nonkey column is dependent on another nonkey

column.
� A database design involves both synthesis and analysis. Normalization is a

process of analyzing a database created with synthesis.
� Normalization is a decomposition process to reduce data redundancy and

data anomalies.
� A database in 1NF does not have any multivalued columns.
� A database in 2NF does not have any partial dependencies.
� A database in 3NF does not have any transitive dependencies.
� Higher normal forms are also possible, and the process of denormalization

is performed on a database to weigh performance against redundancy.

EXERCISE QUESTIONS

True/False:
1. Connectivity is a term used for relationships in the E-R diagram.
2. Partial dependency can exist in a table with a simple primary key.
3. In transitive dependency, a column is dependent on the primary key.
4. Higher normal form means lower redundancy.
5. Normalization is a process of converting a database design from lower to higher normal

form.
6. A 1NF table with simple primary key is already in 2NF.

ShahCh02v3.qxd 4/16/04 11:46 AM Page 35

36 Chap. 2 Database Design: Data Modeling and Normalization

Define the Following Terms:
1. Partial dependency.
2. Transitive dependency.
3. Normalization.
4. Data anomalies.
5. Cardinality.

E-R Diagram Exercise:
1. A student takes many courses, and many students take a course. Create an E-R diagram

to represent the entities, connectivity, and cardinality. Decompose the E-R diagram with
a composite entity to reduce each M:N relationship to two 1:M relationships. Also, draw
the relational schema for the database.

Dependency Diagram Exercise:

1. Create a dependency diagram for the set of given columns for the EMP table:

EMPID Employee’s ID
LAST Employee’s last name
FIRST Employee’s first name
DEPTID Employee’s department number
DEPTNAME Employee’s department name
DEPENDENTNO Employee’s number of dependents
DEPENDENTSSN Dependent’s Social Security number
DEPENDENTDOB Dependent’s date of birth

The primary key columns are EMPID and DEPENDENTNO.

Normalization Exercise:
1. Using the dependency diagram of the EMP table from the previous exercise, normalize

the table to 3NF. Use 1NF-to-2NF and then 2NF-to-3NF conversion.

EMP

EMPID LAST FIRST DEPTID DEPTNAME DEPENDENTNO DEPENDENTSSN DEPENDENTDOB

ShahCh02v3.qxd 4/16/04 11:46 AM Page 36

PART 2
ORACLE SQL

3

Oracle9i: An Overview

IN THIS CHAPTER . . .

� You will learn the differences between a client/server database, such as Oracle,
and PC-based database software.

� The Oracle client/server Database Management System (DBMS) and its
utilities are introduced.

� The Oracle development environment and its various types of
commands are covered.

� An overview of primary language SQL (Structured Query Language) to
communicate with the Oracle Server is given.

� Worksheet and environments are introduced.
� Designs of two case study databases, a college’s student registration data-

base system and a company’s employee database system, are discussed.

PERSONAL DATABASES

Personal database management systems, such as Microsoft Access and Visual Fox
Pro, are usually stored on a user’s desktop computer system or a client computer.
These database packages are developed primarily for single-user applications.When
such a package is used for a multiuser or a shared access environment, the database

iSQL*PlusSQL*Plus

SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 37

38 Chap. 3 Oracle9i: An Overview

File Server

(Database files)

- Gets file requests from
clients

- Sends files to clients
- Receives files back

Client Computer #1

(DBMS, Client Application)

- Sends file request
- Receives files

- Sends files back

- Adds, deletes, updates
 data

Client Computer #2

(DBMS, Client Application)

- Sends file request
- Receives files

- Sends files back

- Adds, deletes, updates
 data

Figure 3-1 A personal database system in a multiuser environment.

applications and the data are stored on a file server, or a server, and data are trans-
mitted to the client computers over the network (see Fig. 3-1).A server is a computer
that accepts and services requests from other computers, such as client computers.A
server also enables other computers to share resources. A server’s resources could
include the server’s hard-disk drive space, application programs on a server’s hard
drive, data stored on the server’s drive, or printers. A network is an infrastructure of
hardware and software that enables computers to communicate with each other.

Demand on Client and Network

In a network environment with a personal DBMS, the client computer must load the
entire database application along with the client database application in its memory.
If the client requires a small piece of data from the server’s large database, the server
has to transmit the entire database to the client over the network. In some database
packages, only part of the database is transmitted. In any case, the client computer
hardware must handle heavy demand, and the network must sustain heavy traffic in
both directions. In the network environment, the system response to various client
requests depends on the speed of the network and the amount of traffic over it.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 38

Client/Server Databases 39

Table Locking

The personal database system assumes that no two transactions will happen at the
same time on one table, which is known as optimistic locking. In optimistic locking,
the tables are not locked by the database system. If one agent sells a seat for a basket-
ball game and another agent tries to sell the same seat at the same time, the data-
base system will notify the second agent about the update on the table after his or
her read—but it will go ahead and let the second agent sell the seat anyway. Appli-
cation programmers can write code to avoid such a situation, but that requires
added effort on programmer’s part. Personal database software does not lock tables
automatically.

Client Failure

When a client is performing record insertions, deletions, or updates, those records
are locked by that client and are not available to the other clients. Now, if the client
with all the record locks fails because of software or hardware malfunction or a
power outage, the locked records stay locked. The transactions in progress at the
time of failure are lost. The database can get corrupted and needs to be repaired. To
repair the database, all users have to log off during the repair, which can take any-
where from a few minutes to a few hours! If the database is not repairable, data can
be restored from the last backup, but the transactions since the last backup are lost
and have to be reentered.

Transaction Processing

Personal databases, such as Microsoft Access, do not have file-based transaction log-
ging. Instead, transactions are logged in the client’s memory. If the client fails in the
middle of a batch of transactions, some transactions are written to the database and
some are not. The transaction log is lost, because it is not stored in a file. If a client
writes a check to transfer money from a savings account to a checking account, the
first transaction debits money from the savings account. Now, suppose the client
fails right after that. The checking account never gets credited with the amount be-
cause the second transaction is lost!

CLIENT/SERVER DATABASES

Client/server databases, such as Oracle, run the DBMS as a process on the server
and run a client database application on each client. The client application sends a
request for data over the network to the server. When the server receives the client
request, the DBMS retrieves data from the database, performs the required pro-
cessing on the data, and sends only the requested data (or query result) back to the
client over the network (see Fig. 3-2).

ShahCh03v3.qxd 4/16/04 11:47 AM Page 39

40 Chap. 3 Oracle9i: An Overview

Database Server

(DBMS process)

- Gets data requests from
clients

- Adds, deletes, updates, filters
data

Client Computer #1

(Client Application)

- Sends data request
- Receives results
- Sends new data

Client Computer #2

(Client Application)

- Sends data request
- Receives results
- Sends new data

Figure 3-2 A client/server database system in a multiuser environment.

Demand on Client and Network

The client computer does not run the entire DBMS, only the client application that
requests data from the server. The client does not store any database on its local
drive; it receives only the requested data from the server. Data processing is per-
formed on the server’s side. The demand at the client’s end is minimal. The clients
request data from the server, and only the requested data are sent back via the net-
work, which results in less network traffic.

Table Locking

In a client/server system, such as Oracle, when an agent reads a table to sell a seat
for a basketball game, for example, it is locked totally or partly by the DBMS. The
second agent cannot read the part of the table with available seats. Once the first
agent sells the seat and it is marked as sold, the lock is released for the next agent.
The DBMS takes care of the locking automatically, and it involves no extra effort on
an application programmer’s part.

Client Failure

In case of a client failure, the client/server database is not affected. The other clients
are not affected either. Only the failed client’s transactions in progress are lost. If

ShahCh03v3.qxd 4/16/04 11:47 AM Page 40

Oracle9i: An Introduction 41

the server fails, a central transaction log, which keeps a log of all current database
changes, allows the Database Administrator (DBA) or DBMS to complete or roll
back unfinished transactions.The rolled-back transactions are not implemented in the
database. The DBA (or DBMS) can notify clients to resubmit rolled-back transac-
tions. Most client/server database packages have fast and powerful recovery utilities.

Transaction Processing

If a grouped transaction or batch transaction fails in the middle, all transactions are
rolled back. The DBMS will enable the bank, for example, to make sure that both
accounts’ balances are changed if the batch transaction goes through. If the batch
transaction fails, the balance in none of the accounts is changed.

ORACLE9i: AN INTRODUCTION

Oracle9i is a client/server DBMS that is based on the relational database model dis-
cussed in Chapter 1. Oracle9i is one of the most popular database-management soft-
ware packages available today. The Oracle Corporation, incorporated in 1986, is the
second-largest software company in the world. Its software product line includes
Oracle9i Database, Oracle9i Application Server, Oracle9i Developer Suite, Oracle
Collaboration Suite, and Oracle E-Business Suite. Oracle Corporation’s revenue
was $9.475 billion in the fiscal year ending May 2003, down 2 percent from the pre-
vious year. The net income for the fiscal year was $2.4 billion. Currently, the com-
mon stock trades at more than $14, with a company market capitalization of more
than $75 billion. Oracle9i database is capable of supporting over 10,000 simultane-
ous users and a database size of up to 100 terabytes! It is preferred to the other PC-
based RDBMS packages because its client/server database qualities, failure
handling, recovery management, administrative tools to manage users and the data-
base, object-oriented capabilities, graphical user interface (GUI) tools, and Web inter-
face capabilities. It is widely used by corporations of all sizes to develop
mission-critical applications. It is also used as a teaching tool by educational institu-
tions to teach object-relational database technology, Structured Query Language
(SQL), PL/SQL (Oracle’s procedural language extension to SQL), and interfacing
Web and Oracle databases. Oracle has an educational initiative program to form
partnerships with educational institutions that enable these institutions to obtain
Oracle database software at a nominal membership fee.

Oracle software is installed to work in three different environments. In a
stand-alone environment, such as a laptop or desktop that is not on a network, Oracle
Enterprise database software and client software are installed on same
machine. In a Client/Server environment, a two-tier architecture with a client com-
municating with a server, Oracle Enterprise database software resides on the server
side, and client software resides on the client machine. In Three-Tier archi-
tecture, the client communicates with the Oracle database server through a middle-
tier an interface through a Web browser.iSQL*Plus,

SQL*Plus

SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 41

42 Chap. 3 Oracle9i: An Overview

Oracle9i components include Oracle9i Database, Oracle9i Application Server,
and Oracle9i Developer Suite. Oracle9i Database introduces Oracle9i Real Appli-
cation Cluster, which replaces Oracle Parallel Server, and features integrated sys-
tem management, high availability, powerful disaster recovery, system fault
recovery, planned downtime, and high security. Oracle9i Application Server is in-
dustry’s preferred application server for database-driven Web sites, with an innova-
tive and comprehensive set of middle-tier services. Oracle9i Developer Suite, an
integrated product, provides a high-performance development environment with
tools like Oracle Forms Developer, Oracle Designer, Oracle JDeveloper, Oracle
Reports Developer, and Oracle Discoverer. Some of the Oracle9i tools include:

� —The environment is for writing command-line SQL
queries to work with database objects such as tables, views, synonyms, and
sequences.

� PL/SQL—PL/SQL is Oracle’s extension to SQL for creating procedural
code to manipulate data.

� Developer Suite—This tool is used for developing database applications and
includes:
� JDeveloper—a Java development tool.
� Designer—to model business processes and generate Enterprise applica-

tions.
� Forms Developer—a developement tool for Internet and client/server–

based environments.
� Oracle Reports—a report generation tool.

� Enterprise Manager—A tool for managing users and databases. Enterprise
Manager uses the following tools:
� Storage Manager—to create and manage “tablespaces.”
� Instance Manager—to start, stop, or tune databases.
� Security Manager—to create and manage users, profiles, and roles.
� Warehouse Manager—to manage data warehousing applications.
� XML Database Manager—to render traditional database data as XML

for e-business support.
� SQL Worksheet—to enter, edit, and execute code or to run client-

side scripts.
� —a Web-based environment to execute code.

� Oracle Application Server (Oracle9iAS)—A tool for creating a Web site
that allows users to access Oracle databases through Web pages. It includes:
� Web Server.

SQL*PlusiSQL*Plus

SQL*Plus

SQL*PlusSQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 42

Structured Query Language (SQL) 43

THE ENVIRONMENT

When a user logs in to connect to the Oracle server, provides the user
with the prompt, where the user writes queries or commands. Features of

include:

� Accepts ad hoc entry of statements at the command line prompt (i.e.,).
� Accepts SQL statements from files.
� Provides a line editor for modifying SQL queries.
� Provides environment, editor, format, execution, interaction, and file

commands.
� Formats query results, and displays reports on the screen.
� Controls environmental settings.
� Accesses local and remote databases.

STRUCTURED QUERY LANGUAGE (SQL)

The standard query language for relational databases is SQL (Structured Query Lan-
guage). It is standardized and accepted by ANSI (American National Standards Insti-
tute) and the ISO (International Organization for Standardization). Structured Query
Language is a fourth-generation, high-level, nonprocedural language, unlike third-
generation compiler languages such as C, COBOL, or Visual Basic, which are proce-
dural. Using a nonprocedural language query, a user requests data from the RDBMS.
The SQL language uses English-like commands such as CREATE, INSERT,
DELETE, UPDATE, and DROP. The SQL language is standardized, and its syntax
is the same across most RDBMS packages. The different packages have minor vari-
ations, however, and they do support some additional commands. Oracle’s SQL is
different from the ANSI SQL. Oracle’s SQL is referred to as but we will simply
call it SQL throughout this text. Oracle9i also supports ANSI syntax for joining tables.

Oracle9i uses the following types of SQL statements for command-line
queries to communicate with the Oracle server from any tool or application:

� Data retrieval—retrieves data from the database (e.g., SELECT).
� Data Manipulation Language (DML)—inserts new rows, changes existing

rows, and removes unwanted rows (e.g., INSERT, UPDATE, and DELETE).
� Data Definition Language (DDL)—creates, changes, and removes a table’s

structure (e.g., CREATE, ALTER, DROP, RENAME, and TRUNCATE).
� Transaction control—manages and changes logical transactions.Transactions

are changes made to the data by DML statements that are grouped together
(e.g., COMMIT, SAVEPOINT, and ROLLBACK).

� Data Control Language (DCL)—gives and removes rights to Oracle objects
(e.g., GRANT and REVOKE).

SQL*,

SQL7

SQL*Plus
SQL>

SQL*Plus

SQL*PLUS

ShahCh03v3.qxd 4/16/04 11:47 AM Page 43

44 Chap. 3 Oracle9i: An Overview

In a few books, the SELECT statement is treated as a subset of DML lan-
guage. I have chosen to separate the SELECT statement from other DML state-
ments, because it does not perform any manipulation on data.

The SQL queries are typed at the prompt. If a query exceeds one line,
the environment displays the next line number on the line editor.An SQL
query is sent to the server by ending a query with a semicolon (;). A query can also
be sent to the server by using a forward slash (/) on a new line instead of ending the
query with a semicolon.

LOGGING IN TO

In the Windows environment, click
(see Fig. 3-3). A Log on window will pop

up. Enter your Username, Password, and Host String as provided by your Database
Administrator (see Fig 3-4).

In a command-line environment such as DOS, type sqlplus [username [/pass-
word [@host/database]]] to log in. If the entire command is typed, the password will
be visible on the screen. If you enter your username only, a prompt will be displayed

� Application Development � SQL Plus
Start � Programs � Oracle - Orahome92

SQL*PLUS

SQL*Plus
SQL7

Figure 3-3 Running SQL*Plus.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 44

Logging in to SQL *PLUS 45

Figure 3-4 Log On window.SQL*Plus

for your password.The password typed at this prompt will be masked to maintain its
integrity (see Fig 3-5).

There are a couple of common login problems. If you enter an incorrect user-
name or password, you will receive the following error message from Oracle server:

ORA-01017: invalid username/password; logon denied

User should consult DBA (students should consult their instructor or academic
computing personnel) to resolve username/password problems.

Figure 3-5 Running from MS-DOS prompt.SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 45

46 Chap. 3 Oracle9i: An Overview

If there is a connectivity issue between your client PC and Oracle or the host
string has an invalid entry, you will see the following error message:

ORA-12154: TNS: could not resolve service name

Oracle stores host string/service values in a file called TNSNAMES.ORA. If you re-
ceive a TNS error, call your DBA!

After a user logs in and the default prompt is displayed, the user can start
a new Oracle session. A user can enter only one command at the
prompt at a time (see Fig. 3-6). commands are not stored in the buffer. If a
command is very long, you can continue the command on the next line by using a hy-
phen at the end of the current line.

SQL*Plus
SQL7SQL*Plus

SQL7

Figure 3-6 environment—SQL prompt.SQL*Plus

The SQL queries and commands are typed at the prompt.
The commands do not have a terminator, but SQL queries are terminated
using a semicolon (;) at the end or by typing a forward slash (/) on a new line. Figure
3-7 shows the differences between SQL statements and commands.

A user may change his or her password by using command PASS-
WORD at the prompt. prompts user to enter the old password first,
then the new password, and then to confirm new password by retyping it (see Fig. 3-8).

COMMANDS

In the tables of Figures 3-9 and 3-10, file-related (see Fig. 3-9) and editor-related
(see Fig. 3-10) commands are described.The command words are in bold letters, and
user-supplied filenames and extensions are in lowercase. The abbreviations allowed
for the commands are underlined. The optional parameters are enclosed
within a pair of brackets ([]). Note that the filename in the file-related commands
requires entire file path.

SQL*Plus

SQL*PLUS

SQL*PlusSQL7
SQL*Plus

SQL*Plus

SQL*Plus
SQL7SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 46

SQL *Plus Commands 47

SQL

1. A nonprocedural language to communicate with 1. An environment for executing SQL statements.
the Oracle server.
2. ANSI standard. 2. Oracle’s proprietary environment.
3. Key words cannot be abbreviated. 3. Key words can be abbreviated.
4. Last statement is stored in the buffer. 4. Commands are not stored in the buffer.
5. Statements manipulate data and table structures 5. Commands do not allow manipulation of data in
in the database. the database.
6. Uses a termination character to execute the 6. Commands do not need a termination character.
command immediately.

SQL*Plus

Figure 3-7 SQL queries versus commands.SQL*Plus

Figure 3-8 PASSWORD command.

COMMAND DESCRIPTION

GET filename [.ext] Writes previously saved file to the buffer. The default extension is
SQL. Writes SQL statements, not commands.

START filename [.ext] Runs a previously saved command from file.
@filename Same as START.
EDIT Invokes the default editor (e.g., Notepad), and saves buffer contents

in a file called afiedt.buf.
EDIT [filename [.ext]] Invokes editor with the command from a saved file.
SAVE filename [.ext] Saves current buffer contents to a file with the option to replace or

append.
APPEND
SPOOL [filename [.ext]] Stores query results in a file. OFF closes the file, and OUT sends the

file to the system printer.
EXIT Leaves environment. Commits current transaction.SQL*Plus

�OFF �OUT

REPLACE �

SQL*Plus

Figure 3-9 file-related commands.SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 47

48 Chap. 3 Oracle9i: An Overview

A query typed at the prompt is loaded in to the buffer. When the
query is sent to the server, the server processes data and sends back the result to
the client computer, which can be formatted using formatting commands
(see Fig. 3-11).

SQL*Plus

SQL*Plus

COMMAND DESCRIPTION

APPEND text Adds text to the end of the current line.
CHANGE / old / new Changes old text to new text in the current line.
CHANGE / text / Deletes text from the current line.
CLEAR BUFFER Deletes all lines from the SQL buffer.
DEL Deletes current line.
DEL n Deletes line n.
DEL m n Deletes lines m through n.
INPUT Inserts an indefinite number of lines.
INPUT text Inserts a line of text.
LIST Lists all lines from the SQL buffer.
LIST n Lists line n.
LIST m n Lists lines m through n.
RUN Displays and runs an SQL statement in the buffer.
N Makes line N current.
n text Replaces line n with text.
0 text Inserts a line before line 1.
CLEAR SCREEN Clears screen.

Figure 3-10 editing commands.SQL*Plus

SQL*Plus

SQL Queries

SQL*Plus
Commands

Formatted Report

Result

SQL Queries
Buffer

Server

Figure 3-11 Interaction between and SQL.SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 48

Alternate Text Editors 49

ORACLE ERRORS AND ONLINE HELP

In the next chapter, you will learn to write and execute SQL statements and queries
at the prompt. If you make a syntax error, Oracle will display an error
message showing the line number and the error location on that line. Oracle places
an asterisk at the location of the error and also displays an error code (e.g., ORA-
00XXX), followed by a brief description. Just like any programming language com-
piler, some error messages are not user friendly. You will get used to some of the
common error messages as you start experimenting. Some queries take up a few
lines—and for a typist like me, typing mistakes are bound to happen! The online
help screens are illustrated in the next chapter.

Some errors are easy to find; some are not. To fix an error, always start at the
line where the error is shown, but keep in mind that the error might not be on that
line. Check for common mistakes like misspelled keywords, missing commas, mis-
placed commas, missing parentheses, invalid user-defined names, or repeated user-
defined identifiers. In the next chapter, we will actually go through the entire
procedure by entering an erroneous query.

Each Oracle product has its own specific help file. The help application opens
up a window, similar to Microsoft Windows help, where you can click on the Index
tab and type the error code (ORA-00XXX) of interest. Oracle provides the user
with an explanation of the cause of the error and the user action required to rectify
it. If you don’t see the Oracle Help option in the programs menu, search for the
ora.hlp file and open it. You can also access Oracle9i Release 2 online help at the
following URL:

http://download-west.oracle.com/docs/cd/B10501_01/mix.920/a96625/toc.htm

The URL is working at this time, but such URLs change frequently. Another way
would be to go through Oracle’s home page (www.oracle.com) and search for help
on your Oracle product. You are required to register to Oracle Technology Net-
work (otn.oracle.com) to access this page. Registration is free, and the member-
ship benefits include free software downloads and access to online documentation.
Figure 3-12 shows the initial Web page with Oracle9i Release 2’s master index.

also provides the user with Help on its various commands and SQL
language.You may use the HELP INDEX command at the prompt to list the

commands.
To obtain help on one of the topics listed in the help index, type INDEX

[TOPIC]. For example, type HELP DESCRIBE as shown in Figure 3-13, and
returns a brief description and syntax on the topic.

ALTERNATE TEXT EDITORS

The editor is a line editor similar to EDLIN in MS-DOS. It is not fun
working with line editors. The user does not have control over the screen. Line edi-
tors do not allow a user to move the cursor up and down, and clicking with a mouse
is definitely out of the question. You can use an alternate text editor such as

SQL*Plus

SQL*Plus

SQL*Plus
SQL7

SQL*Plus

1*2

SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 49

50 Chap. 3 Oracle9i: An Overview

Figure 3-12 Oracle9i online documentation—index page.

Figure 3-13 help.SQL*Plus

SQL> HELP INDEX

Enter Help [topic] for help.

@ COPY PAUSE SHUTDOWN
@@ DEFINE PRINT SPOOL
/ DEL PROMPT SQLPLUS
ACCEPT DESCRIBE QUIT START
APPEND DISCONNECT RECOVER STARTUP
ARCHIVE LOG EDIT REMARK STORE
ATTRIBUTE EXECUTE REPFOOTER TIMING
BREAK EXIT REPHEADER TTITLE
BTITLE GET RESERVED WORDS (SQL) UNDEFINE
CHANGE HELP RESERVED WORDS (PL/SQL) VARIABLE
CLEAR HOST RUN WHENEVER OSERROR
COLUMN INPUT SAVE WHENEVER SQLERROR
COMPUTE LIST SET
CONNECT PASSOWORD SHOW

SQL> HELP DESCRIBE

DESCRIBE-------------

Lists the column definitions for a table, view, or synonym, or the specifications for
a function or procedure.

DESC[RIBE] {[schema.] object [@connect_identifier]}

SQL>

ShahCh03v3.qxd 4/16/04 11:47 AM Page 50

SQL *Plus Worksheet 51

Notepad or any other text editor in Windows to type your SQL queries. The query
typed in a full-screen text editor has to be saved in a file with an .sql extension or
copied to the clipboard.The query can be loaded from a file or pasted from the clip-
board into to execute it at the prompt.

The EDIT (or ED) command can be used to invoke an alternate text editor from
the command prompt. allows the user to select an alternate edi-
tor, and in most cases, Windows’ popular text editor, Notepad, is the default alternate
editor.The EDIT command invokes the alternate editor with contents from the buffer
or with an existing file.The user can make necessary changes to the query and transfer
the contents back to We will see an illustration of this in Chapter 4. An al-
ternate editor is defined or invoked with EDIT menu in The default alter-
nate editor is Notepad for the Windows environment, but this can be changed to
another text editor of user’s choice with Define Editor menu option (see Fig. 3-14).Á

SQL*Plus.
SQL*Plus.

SQL*PlusSQL*Plus

SQL7SQL*Plus

Figure 3-14 Alternate editor.

WORKSHEET

The Worksheet is another environment available with Oracle’s Enter-
prise Manager. The Worksheet enables you to enter, edit, and execute

code. You can also run client-side scripts. The Worksheet main-
tains a history of the commands you have issued, so you can easily retrieve and exe-
cute previous commands. You can execute Worksheet by double-clicking
on the Worksheet icon in the Windows desktop or by selecting the fol-
lowing from the Windows START button:

START | [All] Programs | Oracle – OraHome92 |
Application Development | SQLPlus Worksheet

An Enterprise Manager login screen is then displayed.The user logs in with user-
name, password, and host string, just like logging into On a successful login,
the user enters the Worksheet with database connection (see Fig. 3-15). On
the left side, a tool bar is displayed with connection, execute, command history, previous
command, next command, and help icons from top to bottom, respectively. The user
can select these same options from the File or Worksheet menu.

SQL*Plus
SQL*Plus.

SQL*Plus
SQL*Plus

SQL*PlusSQL*Plus
SQL*Plus

SQL*Plus

SQL*PLUS

ShahCh03v3.qxd 4/16/04 11:47 AM Page 51

52 Chap. 3 Oracle9i: An Overview

The Worksheet screen has two horizontal halves. The user issues an
SQL query or command in the upper half and then clicks on the lighten-
ing-bolt icon to execute. Worksheet output is displayed in the lower half
(see Fig. 3-16). During a session, the user issues many commands and statements.
Unlike Worksheet keeps all commands and statements in his-
tory. The user can click on the command history icon to view them in reverse order,
with the most recent command at the top.The user can then select a command/state-
ment and click GET to load it again and execute it.

The user may save input and output in separate files with the FILE menu and
its options Save Input As and Save Output As respectively.The input is stored
in a file with the default extension .sql, and output is stored with the default exten-
sion .txt.

There are a few differences between and Worksheet. The
following settings have been set up by Oracle Enterprise Manager Work-
sheet. It is recommended that users do not change them:

� The sqlplus system variable SQLPROMPT is disabled by default.
� The sqlplus system variable SQLNUMBER is set to OFF by default.

SQL*Plus
SQL*PlusSQL*Plus

Á ,Á

SQL*Plus, SQL*Plus

SQL*Plus
SQL*Plus

SQL*Plus

Figure 3-15 worksheet.SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 52

SQL *Plus Worksheet 53

� The sqlplus system variable PAGESIZE is set to its maximum by default.
� The sqlplus system variable TAB is set to OFF by default.
� If there are any prompt characters “&” in a script, treats it as a

“define” prompt. (You will see more on DEFINE later.)
� The HOST command is not supported in Worksheet.
� The user variable _EDITOR is disabled by default. If you enable

it by using the specified editor
launches on the server when you type the EDIT command. As a result, you
are unable to access normal Worksheet functionalities.

� Remote execution is not supported.
� Remote load and save of script files is not supported.

SQL*Plus

“DEFINE_EDITOR = ‘editorname’,”
SQL*Plus

SQL*Plus

SQL*Plus

Figure 3-16 Input/output in worksheet.SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 53

54 Chap. 3 Oracle9i: An Overview

The third environment is Web based and is called To access it through a
Web browser, enter a URL as follows:

http://machinename.domainname:port/isqlplus

In this URL, machinename is your machine, but port number is not required in all
versions.

In Figure 3-17, the following URL is used:

http://nshah-monroe/isqlplus

where nshah-monroe is the machine name. The domain name is not used, because
is located in the local machine. In the login dialog, connection identifier

(or host string) is optional if the URL points to the correct database instance. Con-
sult your IT or lab personnel for information on server name, domain name, default
port, and database name at your installation or college. Alternately, http://localhost:

iSQL*Plus

iSQL*Plus.

iSQL*Plus

Figure 3-17 login screen.iSQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 54

iSQL*Plus 55

port/isqlplus or https://localhost:port/isqlplus URL can be used. Oracle installer pro-
vides the port number to access HTTP (Apache) server at the installation time.

In Figure 3-18, a sample SQL query is executed in the work screen.
The output is at the bottom.This environment also provides the user with options to
execute-commands, save or load scripts, check command history, and more.Another
benefit of this environment is the buttons on the top right, such as the Help buttton
to connect to Oracle’s online help, the History button to browse and select com-
mand history, and so on.

In this text, most of the screen shots are from the environment. The
Worksheet and environments are migrations to graphical andiSQL*PlusSQL*Plus

SQL*Plus

iSQL*Plus

Figure 3-18 work screen with query and result.iSQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 55

56 Chap. 3 Oracle9i: An Overview

Web-based environments, respectively, which are more popular environments than
the command-based predecessors.

SAMPLE DATABASES

In this textbook, each chapter uses examples and lab activities to teach various Ora-
cle query statements and utilities by using two fictitious databases. One database is
developed for the Indo–US (IU) College, which keeps track of students, faculty,
courses offered, and enrollment by semester. The other database is designed for the
NamanNavan (N2) Corporation, which has employee, department, dependent, and
employee-level information. These databases are designed using the normalization
techniques covered in Chapter 2. Each database table contains appropriate data to
explain the results obtained from different query statements in the later chapters.

The Indo–US (IU) College Student Database

The Indo–US (IU) College has a computerized database system in place. They have
spent a large sum of money establishing a network infrastructure. The database-
management system that resides on their icomputer system is a unnormalized data-
base. Unnormalized databases are rare in the relational database software family.Their
main feature is multivalued fields, which is a application programmer’s nightmare.This
database does support its own version of query language, but it is not common in the
business world. It is not easy to find Information Systems personnel with experience
using such a database system. The IU administration is fed up with the “holes” in the
system because of redundant data, bad data, and lack of data integrity. Students do not
have the ability to retrieve course information, register online,or retrieve their unofficial
transcript records using computers in the laboratory or the library. Faculty members do
not have online access to their own course information, rosters, or student information.

The college has decided to use a standard relational database management
system to overcome deficiencies of the existing system. The tables for the IU Col-
lege are illustrated in Figure 3-19, and the E-R diagram is illustrated in Figure 3-20.

The IU student database consists of 10 tables to store student master records,
faculty master records, course master records, term-by-term course offerings, and
student registration by each term. It also uses other supporting tables for lookup and
additional information for basic entities in the database. With custom programming,
the faculty and students are given online access to the system to view demographic
information, course information, unofficial transcript records, availability of course
sections by term, and so on. The faculty and student logins are created by the Infor-
mation Systems department. Each student or faculty login name consists of the first
letter of the first name, the first three letters of the last name, and the last four digits
of the Social Security number. The Social Security number data is intentionally
omitted from the STUDENT and FACULTY tables. Student and faculty members
use their Social Security numbers as passwords to access the system.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 56

Sample Databases 57

STUDENT (StudentId, Last, First, Street, City, State, Zip, StartTerm, BirthDate, FacultyId, MajorId, Phone)

StudentId Last First Street City State Zip Start Term Birth Date FacultyId MajorId Phone

00100 Diaz Jose 1 Hill NJ 08863 WN03 02/12/83 123 100 9735551111

Ford

Avenue

#7

00101 Tyler Mickey 12 Bronx NY 10468 SP03 03/18/84 555 500 7185552222

Morris

Avenue

00102 Patel Rajesh 25 Edison NJ 08837 WN03 12/12/85 111 400 7325553333

River

Road

#3

00103 Rickles Deborah 100 Iselin NJ 08838 FL02 10/20/70 555 500 7325554444

Main

Street

00104 Lee Brian 2845 Hope NY 11373 WN03 11/28/85 345 600 2125555555

First

Lane

00105 Khan Amir 213 Clifton NJ 07222 WN03 07/07/84 222 200 2017585555

Broadway

FACULTY (FacultyId, Name, RoomId, Phone, DeptId)

FacultyId Name RoomId Phone DeptId
111 Jones 11 525 1
222 Williams 20 533 2
123 Mobley 11 529 1
235 Vajpayee 12 577 2
345 Sen 12 579 3
444 Rivera 21 544 4
555 Chang 17 587 5
333 Collins 17 599 3

COURSE (CourseId, Title, Credits)

CourseId Title Credits PreReq
EN100 Basic English 0
LA123 English Literature 3 EN100
CIS253 Database Systems 3
CIS265 Systems Analysis 3 CIS253
MA150 College Algebra 3
AC101 Accounting 3

Figure 3-19 Sample tables for the Indo–US (IU) College database.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 57

ROOM (RoomType, RoomDesc)

RoomType RoomDesc
L Lab
C Classroom
O Office

TERM (TermId, TermDesc, StartDate, EndDate)

TermId TermDesc StartDate EndDate
SP02 Spring 2002 04/28/2002 08/16/2002
FL02 Fall 2002 09/08/2002 12/20/2002
WN03 Winter 2003 01/05/2003 04/18/2003
SP03 Spring 2003 04/27/2003 08/15/2003
FL03 Fall 2003 09/07/2003 12/19/2003

58 Chap. 3 Oracle9i: An Overview

CRSSECTION (CsId, CourseId, Section, TermId, FacultyId, Day, StartTime, EndTime, RoomId, MaxCount)

CsId CourseId Section TermId FacultyId Day StartTime EndTime RoomId MaxCount
1101 CIS265 01 WN03 111 MW 09:00 10:30 13 30
1102 CIS253 01 WN03 123 TR 09:00 10:30 18 40
1103 MA150 02 WN03 444 F 09:00 12:00 15 25
1104 AC101 10 WN03 345 MW 10:30 12:00 16 35
1205 CIS265 01 SP03 MW 09:00 10:30 14 35
1206 CIS265 02 SP03 111 TR 09:00 10:30 18 30
1207 LA123 05 SP03 MW 09:00 10:30 15 30
1208 CIS253 21 SP03 123 TR 09:00 10:30 14 40
1209 CIS253 11 SP03 111 MW 09:00 10:30 18 40
1210 CIS253 31 SP03 123 F TBA TBA 19 2

StudentId CsId Midterm Final Status
00100 1103 C F R
00100 1102 B B R
00100 1104 B A R
00102 1102 F D R
00102 1103 A A R
00103 1101 F W W
00103 1104 D D R
00100 1207 X
00103 1206 W
00104 1206 X
00104 1207 R
00104 1210 R
00105 1208 R
00105 1209 X
00101 1205 X
00102 1210 R
00102 1207 X
00102 1206 R

REGISTRATION (StudentId, CsId, Midterm, Final,
RegStatus)

DEPARTMENT (DeptId, DeptName, FacultyId)

DeptId DeptName FacultyId
1 Computer Science 111
2 Telecommunications 222
3 Accounting 333
4 Math & Science 444
5 Liberal Arts 555

MAJOR (MajorId, MajorDesc)

MajorId MajorDesc
100 AAS-Accounting
200 AAS-Computer Science
300 AAS-Telecommunications
400 BS-Accounting
500 BS-Computer Science
600 BS-Telecommunications

Figure 3-19 Sample tables for the Indo–US College database (Continued).

ShahCh03v3.qxd 4/16/04 11:47 AM Page 58

Sample Databases 59

LOCATION (RoomId, Building, RoomNo, Capacity, RoomType)

RoomId Building RoomNo Capacity RoomType
11 Gandhi 101 2 O
12 Gandhi 103 2 O
13 Kennedy 202 35 L
14 Kennedy 204 50 L
15 Nehru 301 50 C
16 Nehru 309 45 C
17 Gandhi 105 2 O
18 Kennedy 206 40 L
19 Kennedy 210 30 L
20 Gandhi 107 2 O
21 Gandhi 109 2 O

Figure 3-19 Sample tables for the Indo–US (IU) College database (Continued).

The STUDENT table contains demographic information. StudentId is used as
a primary key field. Social Security numbers could have been used as the primary
key, but a system-generated StudentId is used instead. Because of security issues, all
student-related reports use StudentId instead of Social Security number. The table
contains FacultyId as a foreign key, which references the FACULTY table to keep
track of student advisors’ information throughout the curriculum. Another foreign
key, MajorId, uses the MAJOR table for a description of students’ majors. A third
foreign key, StartTerm, keeps track of each student’s entry term into the college.

The FACULTY table contains location, phone extension, and department infor-
mation for faculty members identified by a FacultyId, the table’s primary key. To get
further information, the DeptId foreign key field is used for departmental or chair-
person’s data from the DEPARTMENT table. Similarly, the RoomId field is used to
get the building and room number of the faculty offices.

The COURSE table (primary key, CourseId) is the course master, with course
title and credit information. The prerequisite information is kept in the PreReq col-
umn, which serves as a foreign key and references the primary key of the same
COURSE table. It is not very common for a foreign key to reference the primary
key of its own table. A self-join operation is used to join such a table to self.

Each term and its dates are entered in the TERM table. An abbreviated term
and year are used together to create four-character primary key, such as WN03 for
the Winter 2003 term. Normally, numeric columns are prefered for the primary key,
but for our purposes, we are intentionally using a character column as a primary
key. The LOCATION table with a unique RoomId serves multiple purposes by
keeping all types of rooms: It helps academic departments in locating an available
room for a new course section, and the room capacity helps the academic adminis-
tration in scheduling classes with maximum allowable enrollment less than or equal
to the room capacity.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 59

60 Chap. 3 Oracle9i: An Overview

MAJOR
• Primary Key
MajorId [PK1]
• Non-key Attributes
MajorDesc

Taken by

Starts in

Has

In a

Holds

Advised by

Based in

HeadsTeaches in

Has

Is a

STUDENT
• Primary Key
StudentId [PK1]
• Non-key Attributes
Last
First
Street
City
State
Zip
BirthDate
Phone
FacultyId [FK]

CRSSECTION
• Primary Key
Csid [PK1]
• Non-key Attributes
Section
Day
StartTime
EndTime
MaxCount
CourseId [FK]
TermId [FK]

FACULTY
• Primary Key
FacultyId [PK1]
• Non-key Attributes
Names
Phone
RoomId [FK]
RoomType [FK]
DeptId [FK]

LOCATION
• Primary Key
RoomId [PK1]
RoomType [PK2] [FK]
• Non-key Attributes
Building
RoomNo
Capacity

DEPARTMENT
• Primary Key
DeptId [PK1]
• Non-key Attributes
DeptName
FacultyId [FK]

MajorId [FK]
Start Term [FK]

COURSE
REGISTRATION
• Primary Key
StudentId [PK1] [FK]
CsId [PK2] [FK]
• Non-key Attributes
MidTerm
Final
RegStatus

• Primary Key
CourseId [PK1]
• Non-key Attributes
Title
Credits

TERM
• Primary Key
TermId [PK1]
• Non-key Attributes
TermDesc
StartDate
EndDate

ROOM
• Primary Key
RoomType [PK1]
• Non-key Attributes
RoomDesc

Figure 3-20 Indo–US (IU) College database E-R diagram.

Two of the most important tables are CRSSECTION and REGISTRATION.
These tables are related to many other tables in the database, and they grow with
each term. The CRSSECTION table contains courses offered during each term. It
uses CsId as its primary key. The table references COURSE, TERM, FACULTY,

ShahCh03v3.qxd 4/16/04 11:47 AM Page 60

Sample Databases 61

and LOCATION tables with the foreign keys CourseId, TermId, FacultyId, and
RoomId, respectively. The table helps the college administration in flagging each
section as Open or Closed based on the maximum enrollment allowed and the actu-
al current enrollment.

The REGISTRATION table contains each student’s schedule for every regis-
tration term. It can be used for printing class rosters based on student registration
status, for obtaining midterm and final grades, and for grade point averages based
on grades obtained. The database also contains three “lookup” tables, which are
MAJOR, DEPARTMENT, and ROOM. A lookup table is the one that contains a
numeric identification column and another column for its description.

The NamanNavan (N2) Corporation Employee Database

The NamanNavan (N2) Corporation is an up-and-coming name in the Information
Systems field. They are distributors of computer hardware and software and
providers of computer-related services. Recently, they have joined the Web market-
ing community with a broad product line. The management feels it is the right time
for a changeover from an existing hard copy, paper-only system to a more sophisti-
cated system to track their employees’ basic information and the company’s organi-
zational structure, payroll, raises, and promotion-related issues. The tables shown in
Figure 3-21 are created for the corporation’s database, and Figure 3-22 illustrates
the E-R diagram.

The N2 Corporation database contains six tables to describe all employee-related
information.The EMPLOYEE table describes each employee in the company. Each
employee is identified by a unique EmployeeId, which is the primary key for the
table. The basic columns for the employee include the employee’s last name, first
name, immediate supervisor, date of hire for keeping track of anniversary and sen-
iority, yearly salary, commission for the year, and other company-related informa-
tion.This table includes four foreign keys. PositionId is a foreign key that references
a lookup POSITION table to retrieve an employee’s position/job title in the compa-
ny.The DeptId is another foreign key to retrieve a department’s name, location, and
information about the manager. The third foreign key field, QualId, enables the

EMPLOYEE (EmployeeId, Lname, Fname, PositionId, Supervisor, HireDate, Salary, Commission, DeptId,
QualId)

EmployeeId Lname Fname PositionId Supervisor HireDate Salary Commission DeptId QualId

111 Smith John 1 04/15/60 265000 35000 10 1

246 Houston Larry 2 111 05/19/67 150000 10000 4 2

123 Roberts Sandi 2 111 12/02/91 75000 10 2

433 McCall Alex 3 543 05/10/97 66500 20 4

543 Dev Derek 2 111 03/15/95 80000 20000 20 1

200 Shaw Jinku 5 135 01/03/00 24500 3000 30

135 Garner Stanley 2 111 02/29/96 45000 5000 30 5

222 Chen Sunny 4 123 08/15/99 35000 10 3

Figure 3-21 Sample tables for NamanNavan (N2) Corporation’s employee database.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 61

62 Chap. 3 Oracle9i: An Overview

QUALIFICATION (QualId,
QualDesc)

QualId QualDesc
1 Doctorate
2 Masters
3 Bachelors
4 Associates
5 High School

DEPT (DeptId, DeptName, Location, EmployeeId)

DeptId DeptName Location EmployeeId
10 Finance Charlotte 123
20 InfoSys New York 543
30 Sales Woodbridge 135
40 Marketing Los Angeles 246

EMPLEVEL (LevelNo, LowSalary,
HighSalary)

Level-No LowSalary HighSalary
1 1 25000
2 25001 50000
3 50001 100000
4 100001 500000

DEPENDENT (EmployeeId, DependentId, DepDOB,
Relation)

EmployeeId DependentId DepDOB Relation
543 1 09/28/58 Spouse
543 2 10/14/88 Son
200 1 06/10/76 Spouse
222 1 02/04/75 Spouse
222 2 08/23/97 Son
222 3 07/10/99 Daughter
111 1 12/12/45 Spouse

POSITION (PositionId, PosDesc)

PositionId PosDesc
1 President
2 Manager
3 Programmer
4 Accountant
5 Salesman

Figure 3-21 Sample tables for NamanNavan (N2) Corporation’s employee database (Continued).

company to keep a record of an employee’s highest qualification.The fourth foreign
key, Supervisor, references the EmployeeId column in the same table, another can-
didate for the self-join.

The DEPT table, another important table in the database, includes demograph-
ic information about the department’s name and primary location as well as the man-
ager responsible for managing day-to-day operation. Each department is identified
by a unique DeptId as a primary key. The DEPT table also contains an EmployeeId
column as a foreign key to keep information about the department’s manager.

The EMPLEVEL table has different grades based on the salary range as de-
fined by the company.An employee belongs to a certain level or grade based on his or
her salary. There is no direct relationship between the EMPLEVEL and EMPLOY-
EE tables, but a type of join called nonequijoin enables user to join these two tables.

ShahCh03v3.qxd 4/16/04 11:47 AM Page 62

Sample Databases 63

EMPLOYEE

• Primary Key
EmployeeId [PK1]
• Non-key Attributes
Lname
Fname
HireDate
Salary
Commission
Supervisor [FK]
DeptId [FK]
PositionId [FK]
QualId [FK]

DEPENDENT

• Primary Key
DependentId [PK1]
EmployeeId [PK2] [FK]
•Non-key Attributes
DepDOB
Relation

DEPT

• Primary Key
DeptId [PK1]
• Non-key Attributes
DeptNames
Location
EmployeeId [FK]

QUALIFICATION
• Primary Key
QualId [PK1]
•Non-key Attributes
QualDesc

has

has

works in

manages

has

has

POSITION
• Primary Key
PositionId [PK1]
• Non-key Attributes
PositionDesc

EMPLEVEL
• Primary Key
LevelNo [PK1]
•Non-key Attributes
LowSalary
HighSalary

Figure 3-22 N2 Corporation database E-R diagram.

Each employee’s dependents for purposes of the health plan and payroll taxes
are included in the DEPENDENT table. This table does not have a single column
that can be used as primary key. The EmployeeId and DependentId together make
up the composite primary key for the table.Age is not used as an column, because it

ShahCh03v3.qxd 4/16/04 11:47 AM Page 63

64 Chap. 3 Oracle9i: An Overview

does not remain the same. Age can be a very high maintenace column, changing
every year and for different individuals on different days. The use of DepDOB col-
umn eliminates annual maintenance. Each dependent’s age can be derived from Dep-
DOB column or birth date by using available date-related functions in Oracle.

The POSITION and QUALIFICATION tables are basically lookup tables for
the EMPLOYEE table to get descriptions based on foreign keys in the EMPLOY-
EE table that are primary keys in the POSITION and QUALIFICATION tables.

The EMPLOYEE, DEPENDENT, and DEPT tables may have more columns,
but they are omitted for simplicity. Similarly, another lookup table could have been
created to look up relations based on some RelationId column in the DEPEN-
DENT table.

IN A NUTSHELL . . .

� Personal database management systems (DBMSs) are stored on a client
computer and are meant for single users.

� A client/server DBMS runs on a server, and user applications run on the
client computers.

� Personal databases are characterized by heavy hardware demands, heavy
network traffic, database corruption, transaction losses, and poor recovery
mechanisms.

� Client/server databases have better recovery mechanisms.
� Client/server databases provide automatic tables and record-level locking.
� Client/server databases provide file-based transaction logging for recovery

of transactions in case of a failure.
� Oracle9i is a popular client/server database management system that is

based on the relational model.
� The Oracle9i environment provides utilities to work with database tables;

developing forms, reports, and graphs; managing users and databases; and
interfacing the Web and databases.

� Structured Query Language (SQL) is a standard, nonprocedural language
to work with relational database tables.

� is Oracle’s proprietary environment to enter SQL queries.
� SQL is a language with data retrieval, DML, DDL, DCL, and transaction

control query statements.
� is an environment that provides users with editing, file, format-

ting, execution, and interaction commands.
� The Worksheet environment is an alternative to the line-based

environment, with full-page editing and GUI features.
� is a Web-based alternative to that can be used through

a Web browser.
SQL*PlusiSQL*Plus

SQL*Plus
SQL*Plus

SQL*Plus

SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 64

Chap. 3 Exercises Questions 65

� The IU College’s student database system contains student, faculty, course,
course section, and registration information. It includes the following tables:
� STUDENT
� FACULTY
� COURSE
� CRSSECTION
� REGISTRATION
� ROOM
� TERM
� LOCATION
� MAJOR
� DEPARTMENT

� The NamanNavan (N2) Corporation’s employee database system contains
employee, department, and dependent information in the following tables:
� EMPLOYEE
� DEPT
� POSITION
� EMPLEVEL
� QUALIFICATION
� DEPENDENT

EXERCISE QUESTIONS

1. How are client requests served by a server in a personal database and in a client/server
database?

2. How are transactions handled by personal and client/server databases in case of a failure?
3. What are the advantages of client/server databases over personal databases in a multi-

user environment?
4. Name various tools provided by the Oracle9i RDBMS.
5. What is SQL? What are the different types of statements a user can write using SQL in

Oracle9i?
6. What are the functions of the environment?
7. Give two examples of database applications appropriate for a personal database system.
8. Give two examples of database applications appropriate for a client/server database system.
9. What are the benefits of the Worksheet and environments over the

environment?
10. What login problems may be encountered while logging in to
11. Name any three editing commands.
12. Name any three file-related commands.SQL*Plus

SQL*Plus
SQL*Plus?

SQL*Plus
iSQL*PlusSQL*Plus

SQL*Plus

ShahCh03v3.qxd 4/16/04 11:47 AM Page 65

66 Chap. 3 Oracle9i: An Overview

LAB ACTIVITY

1. Log in to Oracle Server at your installation. Locate the sqlplusw.exe file on your client
computer, and double-click on it or click on

START | Programs | OraHome92 | Application Development | SQL*Plus

Ask your DBA/lab personnel/professor for your login username, password, and database
name/host string. Soon, you will get the prompt in the environment.

2. You have not learned any query statements or commands yet. Try the follow-
ing statement at the prompt as given here:

SQL> CREATE TABLE dept (DeptId NUMBER (2),
2 DeptName VARCHAR2 (15) NOT NULL,

3 Location VARCHAR2 (12),

4 EmployeeId NUMBER (4),

5 CONSTRAINT dept_deptid_pk PRIMARY KEY (deptid));

The line numbers shown on the left are generated by they are not entered by
the user. At this point, you do not know the CREATE TABLE statement, naming rules,
data types, or contraints. Just copy the given statement exactly. If you type this statement
without any errors, a “Table created” message will be displayed. If you make a mistake
by misspelling a key word or by missing a punctuation mark, use editing com-
mands to debug the error.

3. Invoke the default full-page editor. What is the default editor?
4. What is displayed in the default editor when invoked?
5. Use the following command at the prompt:

DESCRIBE dept

(Note: the command does not end with a semicolon.) What is displayed by the
command?

6. Use the following command at the prompt:

SHOW USER

What is displayed by the command?
7. Exit from the environment. How will you exit? Do you click on X to close win-

dow or use an command?SQL*Plus
SQL*Plus

SQL7SQL*Plus

SQL*Plus

SQL7SQL*Plus

SQL*Plus

SQL*Plus;

SQL*Plus
SQL*PlusSQL7

ShahCh03v3.qxd 4/16/04 11:47 AM Page 66

IN THIS CHAPTER. . .

� You will learn about Data Definition Language (DDL) statements to work
with the structure of an Oracle database table.

� Various data types used in defining columns in a database table are dis-
cussed.

� Integrity and value constraints and their inclusion in a CREATE TABLE
statement at the column and table level are outlined.

� Viewing, modifying, and removing a table’s structure are also covered.

In the previous chapters, you learned about relational terminology, database modeling,
normalization techniques, the environment, and its commands. Now is the
time to put everything together. In Oracle9i, database tables are objects stored
under a user’s account in an allocated tablespace (storage space) on the Oracle
Server’s disk. Each table under a user’s account must have a unique table name. In
the classroom environment, each student is a user with a unique login/username.
Each object including a table created by a user is stored under that user’s schema. In
this and subsequent chapters, you will create and use tables for the Indo–US (IU)
College and the NamanNavan (N2) Corporation. You will learn to create tables
using SQL statements at the prompt. You will also learn to use alternate
editors for easier editing of erroneous statements.

SQL*Plus

SQL*Plus

4

Oracle Tables: Data

Definition Language (DDL)

ShahCh04v3.qxd 4/16/04 12:40 PM Page 67

68 Chap. 4 Oracle Tables: Data Definition Language (DDL)

NAMING RULES AND CONVENTIONS

A table is an object that can store data in an Oracle database. When you create a
table, you must specify the table name, the name of each column, the data type of
each column, and the size of each column. Oracle provides you with different con-
straints to specify a primary or a composite key for the table, to define a foreign key
in a table that references a primary key in another table, to set data validation rules
for each column, to specify whether a column allows NULL values, and to specify if
a column should have unique values only.

The table and column names can be up to 30 characters long. It is possible to
have a table name that is only one character long. In naming tables and columns, letters
(A–Z, a–z), numbers (0–9) and special characters—$ (dollar sign), _(underscore), and
(pound or number sign)—are allowed. The table or column name, however, must
begin with a letter.The names are not case sensitive, although Oracle stores all object
names in uppercase in its data dictionary. Spaces and hyphens are not allowed in a
table or a column name. An Oracle server–reserved word cannot be used as a table
or a column name. Remember, the most common mistake is the use of a space in
naming a table or a column. It is always a good practice to create short but mean-
ingful names. Also, remember that a table name must be unique in a schema or user
account; there must not be another Oracle object with same name in a schema.
Figure 4-1 shows some valid and invalid table and column names. For invalid names,
the reasons are in parentheses.

Valid Names Invalid Names

STUDENT STUDENT_COURSE_REGISTRATION_TABLE
(more than 30 characters long)

MAJOR_CODE MAJOR CODE (spaces not allowed)
X CREATE (reserved word not allowed)
PROJECT2000 (special character not allowed)
STUDENT#REG#TABLE #STUDENT (must start with a letter)

*PROJECT***2000

Figure 4-1 Valid/invalid table and column names.

DATA TYPES

When a table is created, each column in the table is assigned a data type.A data type
specifies the type of data that will be stored in that column. By providing a data type
for a column, the wrong kinds of data are prevented from being stored in the col-
umn. For example, a name such as Smith cannot be stored in a column with a NUM-
BER data type. Similarly, a job title such as Manager cannot be stored in a column

ShahCh04v3.qxd 4/16/04 12:40 PM Page 68

Data Types 69

with a DATE data type. Data types also help to optimize storage space. Some of the
Oracle data types are described below.

Varchar2

The VARCHAR2 type is a character data type to store variable-length alphanu-
meric data in a column. Currently, VARCHAR is synonymous with VARCHAR2,
but it could be a separate data type with different semantics in the future. Users
are advised to use VARCHAR2 only. A maximum size must be specified for this
type. The default and minimum size is one character. The maximum allowable
size is 4000 characters in Oracle9i. (The maximum size was 2000 characters
in previous versions.) The size is specified within parentheses—for example,
VARCHAR2(20). If the data are smaller than the specified size, only the data
value is stored, and trailing spaces are not added to the value. For example, if a col-
umn NAME is assigned a data type VARCHAR2(25) and the name entered is
Steve Jones, only 11 characters are stored. Fourteen spaces are not added to make
its length equal to the size of the column. If a value longer than the specified size
is entered, however, an error is generated. The longer values are not truncated.
VARCHAR2 is the most appropriate type for a column whose values do not have
a fixed length.

In Oracle9i, the VARCHAR2 data type can also take CHAR or BYTE param-
eters. For example, VARCHAR2(10 BYTE) is same as VARCHAR2(10) because
byte is the default. If VARCHAR2(10 CHAR) is used, each CHAR may take up 1
to 4 bytes. In this text, you will see the default semantic only.

Char

The CHAR type is a character data type to store fixed-length alphanumeric data in
a column. The default and minimum size is one character. The maximum allowable
size is 2000 characters. (This was only 255 characters in previous versions.) If the
value is smaller than the specified size is entered, trailing spaces are added to make
its length equal to the specified length. If the value is longer than the specified size,
an error occurs.The CHAR type is appropriate for fixed-length values. For example,
PHONE, SOCIAL_SECURITY_NUMBER, or MIDDLE_INITIAL columns can
use the CHAR type. The phone numbers and Social Security numbers have numeric
values, but they also use special characters, such as hyphens and parentheses. Both
use fixed-length values, however, so CHAR is the most appropriate type for them.
The CHAR data type uses the storage more efficiently and processes data faster
than the VARCHAR2 type.

In Oracle9i, the CHAR data type can also take CHAR or BYTE parameters.
For example, CHAR(10 BYTE) is same as CHAR(10) because byte is the default.
If CHAR(10 CHAR) is used, each CHAR may take up 1 to 4 bytes. In this text, you
will see the default semantic only.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 69

70 Chap. 4 Oracle Tables: Data Definition Language (DDL)

Number

The NUMBER data type is used to store negative, positive, integer, fixed-decimal, and
floating-point numbers.The NUMBER data type is used for any column that is going
to be employed in mathematical calculations—for example,SALARY,COMMISSION,
or PRICE. When a number type is used for a column, its precision and scale can be
specified. Precision is the total number of significant digits in the number, both to the
left and to the right of the decimal point.The decimal point is not counted in specifying
the precision. Scale is the total number of digits to the right of the decimal point. The
precision can range from 1 to 38.The scale can range from to 127.

An integer is a whole number without any decimal part. To define a column
with integer values, only the scale size is provided. For example, EmployeeId in the
EMPLOYEE table has values of 111, 246, 123, 433, and so on. The data type for it
would be defined as NUMBER(3), where 3 represents the maximum number of
digits. Remember to provide room for future growth when defining the size. If a corpo-
ration has up to 999 employees, a size of 3 will work for now.With future growth, the
corporation’s number of employees may rise to 1000 or higher. By using a size of 4,
you provide room for up to 9999 employees.

A fixed-point decimal number has a specific number of digits to the right of
the decimal point. The PRICE column has values in dollars and cents, which re-
quires two decimal places—for example, values like 2.95, 3.99, 24.99, and so on. If it
is defined as NUMBER(4,2), the first number specifies the precision and the second
number the scale. Remember that the decimal place is not counted in the scale. The
given definition will allow a maximum price of 99.99.

A floating-point decimal number has a variable number of decimal places.The
decimal point may appear after any number of digits, and it may not appear at all.To
define such a column, do not specify the scale or precision along with the NUMBER
type. For example,TAXRATE, INTEREST_RATE, and STUDENT_GPA columns
are likely to have variable numbers of decimal places. By defining a column as a
floating-point number, a value can be stored in it with very high precision.

Date

The DATE data type is used for storing date and time values. The range of allow-
able dates is between January 1, 4712 B.C. and December 31, 9999 A.D. The day,
month, century, hour, minute, and second are stored in the DATE-type column.
There is no need to specify size for the DATE type. The default date format is DD-
MON-YY, where DD indicates the day of the month, MON represents the month’s
first three letters (capitalized), and YY represents the last two digits of the year.
These three values are separated by hyphens. The DD-MON-YYYY format also
works as the default in Oracle9i.To use any other format to enter a date value, you are
required to use the TO_DATE function.The default time format is HH:MM:SS A.M.,

-84

ShahCh04v3.qxd 4/16/04 12:40 PM Page 70

Data Types 71

representing hours, minutes and seconds in a 12-hour time format. If only a date is
entered, the time defaults to 12:00:00 A.M. If only a time is entered, the date de-
faults to the first day of the current month. For example, HIREDATE for Employ-
eeId 111 in the EMPLOYEE table in the N2 Corporation database is stored as
15-APR-60 12:00:00 A.M.

In a table, it is not advisable to use columns like AGE, because age not only
changes for all entities but also changes at different times. A column like AGE can
become a very high-maintenance column. It is advisable to use BIRTHDATE as a
column instead. Oracle9i provides users with quite a few built-in date functions for
date manipulation. Just simple date arithmetic is enough to calculate age from the
birth date! The birth date never changes, so no maintenance on it is necessary.

Other advanced data types used in Oracle are not used in the sample databases
discussed in Chapter 3. These advanced data types are outlined here for your infor-
mation only:

LONG. The LONG type is used for variable-length character data up to 2
gigabytes. There can be only one LONG-type column in a table. It is used to
store a memo, invoice, or student transcript in the text format. When defining
to LONG type, there is no need to specify its size.

NCHAR. The NCHAR type is similar to CHAR but uses 2-byte binary
encoding for each character. The CHAR type uses 1-byte ASCII encoding for
each character, giving it the capability to represent 256 different characters.
The NCHAR type is useful for character sets such as Japanese Kanji, which
has thousands of different characters.

CLOB. The Character Large Object data type is used to store single-byte
character data up to 4 gigabytes.

BLOB. The Binary Large Object data type is used to store binary data up to
4 gigabytes.

NCLOB. The character Large Object type uses 2-byte character codes.

BFILE. The Binary File type stores references to a binary file that is external
to the database and is maintained by the operating system’s file system.

RAW(size) or LONG_RAW. These are used for raw binary data.

ROWID. For unique row address in hexadecimal format.

Many of the Large Object (LOB) data types are not supported by all versions
of Oracle and its tools. These data types are used for storing digitized sounds, for
images, or to reference binary files from Microsoft Excel spreadsheets or Microsoft
Word documents. We will not use LOB data types in this book. Figure 4-2 shows a
brief summary of Oracle data types and their use in storing different types of data.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 71

72 Chap. 4 Oracle Tables: Data Definition Language (DDL)

Data Type Use

VARCHAR2 (size) Variable-length character data: 1 to 4000
characters

CHAR (size) Fixed-length character data: 1 to 2000 characters
NUMBER (p) Integer values
NUMBER (p, s) Fixed-point decimal values
NUMBER Floating-point decimal values
DATE Date and time values
LONG Variable-length character data up to gigabytes
NCHAR Similar to CHAR; uses 2-byte encoding
BLOB Binary data up to 4 gigabytes
CLOB Single-byte character data up to 4 gigabytes
NCLOB Similar to CLOB; supports 2-byte encoding
BFILE Reference to an external binary file
RAW (size) Raw binary data up to 2000 bytes
LONG_RAW Same as RAW; stores up to 2 gigabytes
ROWID Unique address of a row in a table

Figure 4-2 Data types and their use.

CONSTRAINTS

Constraints enforce rules on tables. An Oracle table can be created with the column
names, data types, and column sizes, which are sufficient just to populate them with
actual data. Without constraints, however, no rules are enforced. The constraints
help you to make your database one with integrity. We learned the integrity rules in
Chapter 1. The constraints are used in Oracle to implement integrity rules of a rela-
tional database and to implement data integrity at the individual-column level.
Whenever a row/record is inserted, updated, or deleted from the table, a constraint
must be satisfied for the operation to succeed.A table cannot be deleted if there are
dependencies from other tables in the form of foreign keys.

Types of Constraints

There are two types of constraints:

1. Integrity constraints: define both the primary key and the foreign key
with the table and primary key it references.

2. Value constraints: define if NULL values are disallowed, if UNIQUE val-
ues are required, and if only certain set of values are allowed in a column.

Naming a Constraint

Oracle identifies constraints with an internal or user-created name. For a user’s ac-
count, each constraint name must be unique.A user cannot create constraints in two

ShahCh04v3.qxd 4/16/04 12:40 PM Page 72

Constraints 73

different tables with the same name. The general convention used for naming con-
straints is

<table name>_<column name>_<constraint type>

Here, table name is the name of the table where the constraint is being defined,
column name is the name of the column to which the constraint applies, and
constraint type is an abbreviation used to identify the constraint’s type. Figure 4-3
shows popular abbreviations used for the constraint type.

Constraint Abbreviation

PRIMARY KEY pk
FOREIGN KEY fk
UNIQUE uk
CHECK ck or cc
NOT NULL nn

Figure 4-3 Popular constraint abbreviations.

For example, a constraint name emp_deptno_fk refers to a constraint in table
EMP on column DeptNo of type foreign key. A constraint name dept_deptno_pk is
for a primary key constraint in table DEPT on column DeptNo.

If you do not name a constraint, the Oracle server will generate a name for it
by using SYS_Cn format, where n is any unique number. For example, SYS_C000010
is an Oracle server–named constraint. These names are not user friendly like user-
named constraints.

Defining a Constraint

A constraint can be created at the same time the table is created, or it can be added
to the table afterward. There are two levels where a constraint is defined:

1. Column level: A column-level constraint references a single column and is
defined along with the definition of the column.Any constraint can be de-
fined at the column level except for a FOREIGN KEY and composite pri-
mary key constraints. The general syntax is

Column datatype [CONSTRAINT constraint_name] constraint_type,

(In this book, you will see the following convention for syntax: Reserved
words will be written in uppercase and user-defined identifiers in lower or
mixed case. Optional parts will be within brackets ([]). The pipe symbol

will represent OR situations in statement syntax.)1|2

ShahCh04v3.qxd 4/16/04 12:40 PM Page 73

74 Chap. 4 Oracle Tables: Data Definition Language (DDL)

2. Table level: A table-level constraint references one or more columns and
is defined separately from the definitions of the columns. Normally, it is
written after all columns are defined. All constraints can be defined at the
table level except for the NOT NULL constraint. The general syntax is:

[CONSTRAINT constraint_name] constraint_type(Column, . . .),

The PRIMARY KEY Constraint. The PRIMARY KEY Constraint is also
known as the entity integrity constraint. It creates a primary key for the table. A
table can have only one primary key constraint. A column or combination of
columns used as a primary key cannot have a null value, and it can only have unique
values. For example, the DEPT table in the N2 Corporation database used the DeptId
column as a primary key. At the column level, the constraint is defined by

DeptId NUMBER (2) CONSTRAINT dept_deptid_pk PRIMARY KEY,

At the table level; the constraint is defined by

CONSTRAINT dept_deptid_pk PRIMARY KEY(DeptId),

If a table uses more than one column as its primary key (i.e., a composite key),
the key can only be declared at the table level. For example, the DEPENDENT
table in the N2 database uses two columns for the composite primary key:

CONSTRAINT dependent_emp_dep_pk PRIMARY KEY(Employeeld, DependentId),

The FOREIGN KEY Constraint. The FOREIGN KEY constraint is also
known as the referential integrity constraint. It uses a column or columns as a foreign
key, and it establishes a relationship with the primary key of the same or another
table. For example, FacultyId in the STUDENT table in the IU College database
references the primary key FacultyId in the FACULTY table. The STUDENT table
is known as the dependent or child table, and the FACULTY table is known as the
referenced or parent table.

To establish a foreign key in a table, the other referenced table and its primary
key must already exist. Foreign key and referenced primary key columns need not
have the same name, but a foreign key value must match the value in the parent
table’s primary key value or be NULL. For example, the foreign key FacultyId can-
not have value 999 in the STUDENT table, because it does not exist in the FACULTY
(parent) table’s primary key FacultyId.

Oracle does not keep pointers for relationships, but they are based on con-
straints and data values within those columns. The relationship is purely logical and
is not physical in Oracle. At the table level (in the STUDENT table),

CONSTRAINT student_facultyid_fk FOREIGN KEY(FacultyId) REFERENCES faculty(FacultyId),

Before ending a FOREIGN KEY constraint, ON DELETE CASCADE can
be added to allow deletion of a record/row in the parent table and deletion of the

ShahCh04v3.qxd 4/16/04 12:40 PM Page 74

Constraints 75

dependent rows/records in the child table. Without the ON DELETE CASCADE
clause, the row/record in the parent table cannot be deleted if the child table references
it. For example, the row for FacultyId 111 cannot be deleted from the FACULTY table,
because it is referenced by a row in the STUDENT table.

The NOT NULL Constraint. The NOT NULL constraint ensures that the
column has a value and the value is not a null (unknown or blank) value. A space or
a numeric zero is not a null value. There is no need to use the not null constraint for
the primary key column, because it automatically gets the not null constraint. The
foreign key is permitted to have null values, but a foreign key is sometimes given the
not null constraint.This constraint cannot be entered at the table level. For example,
the name column in FACULTY table is not a key column, but you don’t want to
leave it blank. At the column level, the constraint is defined by:

Name VARCHAR2(15) CONSTRAINT faculty_name_nn NOT NULL,

or

Name VARCHAR2(15) NOT NULL,

In the second example, the user does not supply the constraint name, so Oracle will
name it with SYS_Cn format.

The UNIQUE Constraint. The UNIQUE constraint requires that every
value in a column or set of columns be unique. If it is applied to a single column, the
column has unique values only. If it is applied to a set of columns, the group of
columns has a unique value together. The unique constraint allows null values un-
less NOT NULL is also applied to the column. For example, the DeptName column
in the DEPT table should not have duplicate values. At the table level, the con-
straint is defined by:

CONSTRAINT dept_dname_uk UNIQUE(DeptName),

At the column level, the constraint is defined by

DeptName VARCHAR2(12) CONSTRAINT dept_dname_uk UNIQUE,

The composite unique key constraint can be defined only at the table level by
specifying column names separated by a comma within parentheses. Oracle implicitly
creates an index on the unique column to enforce the UNIQUE constraint.

The CHECK Constraint. The CHECK constraint defines a condition that
every row must satisfy. There can be more than one CHECK constraint on a col-
umn, and the CHECK constraint can be defined at the column as well as the table
level. At the column level, the constraint is defined by

DeptId NUMBER (2) CONSTRAINT dept_deptid_cc CHECK((DeptId >= 10) and (DeptId <= 99)),

ShahCh04v3.qxd 4/16/04 12:40 PM Page 75

76 Chap. 4 Oracle Tables: Data Definition Language (DDL)

At the table level, the constraint is defined by

CONSTRAINT dept_deptid_cc CHECK((DeptId >= 10) and (DeptId <= 99)),

The NOT NULL CHECK Constraint. A NOT NULL constraint can be de-
clared as a CHECK constraint. Then, it can be defined at column or table level. For
example,

Name VARCHAR2(15) CONSTRAINT faculty_name_ck CHECK(Name IS NOT NULL),

The DEFAULT Value (It’s Not a Constraint). The DEFAULT value en-
sures that a particular column will always have a value when a new row is inserted.
The default value gets overwritten if a user enters another value. The default value
is used if a null value is inserted. For example, if most of the students live in New Jer-
sey,“NJ” can be used as a default value for the State column in the STUDENT table.
At the column level, the value is defined by:

State CHAR(2) DEFAULT ‘NJ’,

CREATING AN ORACLE TABLE

A user creates an Oracle table in the environment. You will run the Ora-
cle Client application from your PC as described in Chapter 3. An Oracle table is
created from the prompt in the environment. A Data Definition
Language (DDL) SQL statement, CREATE TABLE, is used for table creation. A
table is created as soon as the CREATE statement is successfully executed by the
Oracle server. The general syntax of CREATE TABLE statement is:

CREATE TABLE [schema.] tablename
(column1 datatype [CONSTRAINT constraint_name] constraint_type. . .,
column2 datatype [CONSTRAINT constraint_name] constraint_type,
[CONSTRAINT constraint_name] constraint_type (column, . . .),. . .);

In the syntax,

Schema is optional, and it is same as the user’s login name.
Tablename is the name of the table given by the user.
Column is the name of a single column.
Datatype is the column’s data type and size.
Constraint_name is the name of constraint provided by the user as per the con-
ventions discussed earlier in this chapter.
Constraint_type is the integrity or value constraint.

Each column may have zero, one, or more constraints defined at the column level.
The table level constraints are normally declared after all column definitions.

SQL is not case sensitive. In this textbook, the reserved words are written in
capitalized letters and user-defined names in lower or mixed-case letters. The spaces,

SQL*PlusSQL7

SQL*Plus

ShahCh04v3.qxd 4/16/04 12:40 PM Page 76

Creating an Oracle Table 77

SQL> CREATE TABLE location
2 (RoomId NUMBER(2),
3 Building VARCHAR2(7) CONSTRAINT location_building_nn NOT NULL,
4 RoomNo CHAR(3) CONSTRAINT location_roomno_nn NOT NULL,
5 Capacity NUMBER(2)
6 CONSTRAINT location_capacity_ck CHECK(Capacity>0),
7 RoomType CHAR,
8 CONSTRAINT location_roomid_pk PRIMARY KEY(RoomId),
9 CONSTRAINT location_roomno_uk UNIQUE(RoomNo);

Table created.

SQL>

Figure 4-4 CREATE TABLE statement.

tabs, and carriage returns are ignored. Let us create the LOCATION table in the IU
College database using the CREATE TABLE statement. When the statement is ex-
ecuted and there are no syntax errors, a “Table Created” message will be displayed
on the screen (see Fig. 4-4).

If there are errors in the CREATE TABLE statement, the statement does not
return the “Table Created” message when executed. Oracle displays an error message
instead (see Fig. 4-5). The error messages are not very userfriendly. In the statement

Figure 4-5 CREATE TABLE statement with error.

SQL> CREATE TABLE emplevel (LevelNo NUMBER(1),
2 LowSalaray Number(6),
3 HighSalary Number(6)
4 CONSRAINT emplevel_levelno_pk PRIMARY KEY(LevelNo));

CREATE TABLE emplevel (LevelNo NUMBER(1),

ERROR at line 1:
ORA-00922: missing or invalid option
SQL> 3

3* HighSalary Number(6)
SQL> A,

3* HighSalary Number(6),
SQL> /

CONSRAINT emplevel_levelno_pk PRIMARY KEY(LevelNo))

ERROR at line 4:
ORA-00907: missing right parenthesis
SQL> C/CONSRAINT/CONSTRAINT/

4* CONSTRAINT emplevel_levelno_pk PRIMARY KEY(LevelNo))
SQL> /

Table Created.

SQL>

ShahCh04v3.qxd 4/16/04 12:40 PM Page 77

78 Chap. 4 Oracle Tables: Data Definition Language (DDL)

shown, the column definition in line 3 is missing a comma—but the error message does
not really tell us that! We will discuss error codes and messages later in this chapter.

We will debug the statement using commands. The error is in line 3,
and we will perform the following steps (see Fig. 4-5):

1. Go to line 3 (is displayed next to the current line number).
2. Replace the character) in line 3 with), or append a comma (,) to the line.
3. Execute the debugged statement using a slash (/).

As you see in Figure 4-5, the statement has another error, this time in line 4.
We use C/CONSRAINT/CONSTRAINT to change the incorrect spelling. Then, we
execute the statement from buffer by entering a slash (/) again. There we go! Table
is created.We can edit erroneous statement with the help of an alternate editor, such
as Notepad. To load an erroneous statement in Notepad and modify it, we perform
the following steps:

1. At the prompt, we type ED (or EDIT) to invoke Notepad.
2. We make required corrections to the script.
3. We save our statement on the disk using the Save option from the File

menu in Notepad, and we name our statement A:\CREATE. Notepad
adds the extension .txt to the filename. To suppress Notepad’s default
.txt extension, type the file name in a pair of double quotes, and use the
extension .sql (e.g., “A:\CREATE.SQL”).

4. We exit Notepad to go back to the environment.
5. We can run the saved statement with @ or the RUN command.

The “Table Created” message is displayed when the statement is error-free.At
this point, the table is created, and its structure is saved. We created the LOCA-
TION and EMPLEVEL tables with PRIMARY KEY, UNIQUE, CHECK, and
NOT NULL constraints. Once a table is created, more constraints can be added,
more columns can be added, and existing columns’ properties can be changed. We
did not define any foreign key constraints with the LOCATION table, because the
table referenced by the foreign key must already exist!

STORAGE Clause in CREATE TABLE

A CREATE TABLE statement may have an optional STORAGE clause. This
clause is used to allocate initial disk space for the table at the time of creation with
the INITIAL parameter and also to allocate additional space with the NEXT pa-
rameter in case the table runs out of allocated initial space. For example,

CREATE TABLE sample (Id NUMBER(3), Name VARCHAR2(25))
TABLESPACE CIS_DATA
STORAGE (INITIAL 1M NEXT 100K)
PCTFREE 20;

SQL*Plus

SQL7

*

SQL*Plus

ShahCh04v3.qxd 4/16/04 12:40 PM Page 78

Displaying Table Information 79

In the previous example, the TABLESPACE clause is used to specify the user’s ta-
blespace name. If it is not specified, Oracle uses the default permanent tablespace any-
way. The STORAGE clause allocates 1 megabyte initially on tablespace CIS_DATA,
and 100 kilobytes as additional space on the same tablespace. The INITIAL and
NEXT parameters use values in K (kilobytes) or M (megabytes). The PCTFREE
(percentage- free) clause is used to allow for future increment in row size. Oracle rec-
ommends the following formula in deciding initial extent size for a table:

AVG_ROW_LEN · Number of rows · (1 + 0.15) · (1 + PCTFREE/100)

The AVG_ROW_LEN is a column in USER_TABLES Data Dictionary table. The
0.15 (or 15%) is recommended for overhead.

DISPLAYING TABLE INFORMATION

When a user creates a table or many tables in his or her database, Oracle tracks them
all using its own Data Dictionary. Oracle has SQL statements and com-
mands for the user to view that information from Oracle’s Data Dictionary tables.

Viewing a User’s Table Names

A user types an SQL statement to retrieve his or her table names. Often, you use it
to review information, and often, you want to find out what has already been creat-
ed and what is to be created. To find out all tables owned by you, type the following
statement:

SELECT TABLE_NAME FROM USER_TABLES;

Oracle creates system tables to store information about users and user objects.
USER_TABLES is an Oracle system database table, and TABLE_NAME is one of
its columns. The display will include all table names you have created and any other
tables that belong to you. If you change USER_TABLES with ALL_TABLES, you
can get listing of all tables you own as well as those you are granted privileges to by
other users. The USER_ TABLES table has many other columns. To display all
columns, type the following statement:

SELECT * FROM USER_TABLES;

(In this case, You will see more information than you need. The display rows will
wrap many times to show all columns/information related to each table.)

You can get information about the STORAGE clauses’ atributes by using the
Data Dictionary view USER_SEGMENTS:

SELECT Segment_Name, Bytes, Blocks, Initial_Extent, Next_Extent
FROM USER_SEGMENTS;

SQL*Plus

ShahCh04v3.qxd 4/16/04 12:40 PM Page 79

80 Chap. 4 Oracle Tables: Data Definition Language (DDL)

Viewing a Table’s Structure

You can display the structure entered by you in a CREATE TABLE statement. If
you have made any changes to the table’s structure, the changes will also show in the
structure’s display. Figure 4-6 shows the command to view a table’s struc-
ture. The command is DESCRIBE (or DESC), which does not need a semicolon at
the end because it is not a SQL statement. Notice that the default display of column
names, the NOT NULL constraint, and data type are in uppercase. You did not add
a NOT NULL constraint for the primary key, but by default, Oracle adds it for all
primary key columns.

SQL*Plus

Figure 4-6 DESCRIBE command and table structure.

SQL> DESCRIBE student
Name Null? Type
-

STUDENTID NOT NULL CHAR (5)
LAST NOT NULL VARCHAR2 (15)
FIRST NOT NULL VARCHAR2 (15)
STREET VARCHAR2 (25)
CITY VARCHAR2(15)
STATE CHAR (2)
ZIP CHAR (5)
STARTTERM CHAR (4)
BIRTHDATE DATE
FACULTYID NUMBER (3)
MAJORID NUMBER (3)
PHONE CHAR (10)

SQL>

Viewing Constraint Information

Oracle’s Data Dictionary table USER_CONSTRAINTS stores information about
constraints you have entered for each column. Figure 4-7 shows the statement and
the result, which include the constraint’s name and type. When you type the state-
ment, the table name must be typed in uppercase, because Oracle saves table names
in uppercase. If you type the table name in lowercase, no constraint names will be
displayed.

The constraints named by the user have more meaningful names than the ones
named by Oracle. Constraints like NOT NULL are usually not named by the user.
Oracle names them using the SYS_Cn format, where n is any number. Constraint
type C is displayed for NOT NULL and CHECK constraints. Constraint type P is
for primary key and type R for foreign key constraints. You will type only the first
two lines of the statement in Figure 4-7 to display all constraints in your account.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 80

Displaying Table Information 81

Figure 4-7 Constraint information.

SQL> SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE
2 FROM USER_CONSTRAINTS
3 WHERE TABLE_NAME = ‘STUDENT’;

CONSTRAINT_NAME C
- -

STUDENT_FIRST_NN C
STUDENT_STUDENTID_PK P
STUDENT_FACULTYID_FK R
STUDENT_MAJORID_FK R
STUDENT_STARTTERM_FK R
STUDENT_LAST_NN C

6 rows selected

SQL>

The ORDER BY clause is added to sort the constraint display by table name. For
example,

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME
FROM USER_CONSTRAINTS
ORDER BY TABLE_NAME;

Another Data Dictionary table, USER_CONS_COLUMNS, stores column-
related information about constraints. You can use the statement shown in Figure 4-8
to see the constraint names and associated column names. In this statement, only
the table name within single quotes needs to be in uppercase, because Oracle stores
table names in that case.

Figure 4-8 Constraint column information.

SQL> COLUMN COLUMN_NAME FORMAT A15
SQL> SELECT CONSTRAINT_NAME, COLUMN_NAME

2 FROM USER_CONS_COLUMNS
3 WHERE TABLE_NAME = ‘STUDENT’;

CONSTRAINT_NAME COLUMN_NAME
- -

STUDENT_FACULTYID_FK FACULTYID
STUDENT_FIRST_NN FIRST
STIDENT_LAST_NN LAST
STUDENT_MAJORID_FK MAJORID
STUDENT_STARTTERM_FK STARTTERM
STUDENT_STUDENTID_PK STUDENTID

6 rows selected.

SQL>

ShahCh04v3.qxd 4/16/04 12:40 PM Page 81

82 Chap. 4 Oracle Tables: Data Definition Language (DDL)

Viewing Tablespace Information

A tablespace consists of one or more physical data files. You can get information
about all tablespaces available to you by using Data Dictionary view USER_TABLE-
SPACES. We will discuss types of views and the Oracle Data Dictionary in later
chapters.You can use the DESCRIBE command and the SELECT statement with a
view the same way you use with tables. For example,

DESCRIBE USER_TABLESPACES
SELECT * FROM USER_TABLESPACES;

Similarly, another Data Dictionary view, USER_USERS, gives user informa-
tion about his or her account as well as permanent and temporary tablespaces. For
example,

SELECT * FROM USER_USERS;

COMMENT on Tables and Columns

When you create a table, you can add comments to the table and its columns. You
can do it for documentation purpose with a COMMENT statement. For example,

COMMENT ON TABLE student IS ‘Table holds students for INDO-US College’
COMMENT ON COLUMN employee.Lname IS ‘Employee’’s last name’

You can view information about all comments on tables and columns by using
Data Dictionary views ALL_TAB_COMMENTS and ALL_COL_COMMENTS,
respectively.

ALTERING AN EXISTING TABLE

In a perfect scenario, the table you create will not need any structural modifications.
You must try to plan and design a database that is close to perfect in all respects. In
reality, however, this is not the case. Even perfect tables need changes.There are cer-
tain modifications that you can make to a table’s structure. There are other modifi-
cations that you cannot make to an existing table’s structure.

Modifications allowed without any restrictions include:

� Adding a new column to the table.
� Deleting a foreign key constraint from a table.
� Deleting a primary key constraint from a table, which also removes any ref-

erences to it from other tables in the database with CASCADE clause.
� Increasing the size of a column. For example, VARCHAR2(15) can be

changed to VARCHAR2(20).
� Renaming columns (Oracle9i onward).
� Renaming constraints (Oracle9i onward).

ShahCh04v3.qxd 4/16/04 12:40 PM Page 82

Altering an Existing Table 83

Modifications allowed with restrictions include:

� Adding a foreign key constraint is allowed only if the current values are null
or exist in the referenced table’s primary key.

� Adding a primary key constraint is allowed if the current values are not null
and are unique.

� Changing a column’s data type and size is allowed only if there is no data in it
(Oracle8i and earlier). In Oracle9i, column size may be decreased if existing
data can be stored with the new column width.

� Adding a unique constraint is possible if the current data values are unique.
� Adding a check constraint is possible if the current data values comply with

the new constraint.
� Adding a default value is possible if there is no data in the column.

Modifications not allowed include:

� Changing a column’s name (Oracle8i and earlier).
� Changing a constraint’s name (Oracle8i and earlier).
� Removing a column (Oracle8 and earlier).

In Oracle8i onward, you are allowed to remove/drop a column from a table or
set it as unused. If you already have created a table and need to make a change that
is not allowed, you may DROP the table and recreate it.You will also learn in a later
chapter that a table can be created using another table with the use of a nested query.

Adding a New Column to an Existing Table

The general syntax to add a column to an existing table is

ALTER TABLE tablename

ADD columnname datatype;

For example, if the IU College decides to track a student’s Social Security number
along with the student’s ID, a new column can be added to the STUDENT table, as
shown in Figure 4-9. If the table already contained rows of data, you will have to use
UPDATE statement (covered in the next chapter) for each row to add values in the
newly added column.

SQL> ALTER TABLE student
2 ADD SocialSecurity CHAR(9);

Table altered.

SQL>

Figure 4-9 ALTER TABLE—adding a column.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 83

84 Chap. 4 Oracle Tables: Data Definition Language (DDL)

Modifying an Existing Column

The general syntax to modify an existing column is

ALTER TABLE tablename
MODIFY columnname newdatatype;

where newdatatype is the new data type or the new size for the column. For example,
say the IU College wants to allow data-entry personnel to enter values with or with-
out dashes in the Social Security column. The data type can be changed from
CHAR(9) to VARCHAR2(11) to accommodate this new format (see Fig. 4-10).

Figure 4-10 ALTER TABLE—modifying a column.

SQL> ALTER TABLE student
2 MODIFY SocialSecurity VARCHAR2(11);

Table altered.

SQL>

Adding a Constraint

In this section, we will try to add various constraints in a table using the ALTER
TABLE statement. As introduced in Chapter 3, the EMPLOYEE table in the N2
corporation database has a PositionId column, which references the POSITION
table’s primary key PositionId. To add a constraint using ALTER TABLE, the syn-
tax for table level constraint is used. The general syntax of ALTER TABLE is

ALTER TABLE tablename
ADD [CONSTRAINT constraint_name] constraint_type (column, …),

For example,

ALTER TABLE employee
ADD CONSTRAINT employee_positionid_fk FOREIGN KEY (PositionId)

REFERENCES position (PositionId);

Figure 4-11a shows the ALTER TABLE statement that adds a new constraint

Figure 4-11a ALTER TABLE—adding a constraint.

SQL> ALTER TABLE course
2 ADD CONSTRAINT COURSE_PREREQ_FK FOREIGN KEY(PREREQ)
3 REFERENCES COURSE(COURSE_ID);

Table altered.

SQL>

ShahCh04v3.qxd 4/16/04 12:40 PM Page 84

Altering an Existing Table 85

to table COURSE. The foreign key column PreReq references primary key column
CourseId of its own table. Such a reference is known as a circular reference.

The TERM table in the IU College database contains two columns, StartDate
and EndDate. The start date for a term must fall before the end date for the same
term. Use of a CHECK constraint will guarantee the necessary data integrity. The
problem is that during creation of the TERM table, defining a constraint that com-
pares values in two columns of the same table is not possible. The constraint can be
defined with the ALTER TABLE statement, however, as shown in Figure 4-11b.

SQL> ALTER TABLE term
2 ADD CONSTRAINT term_startdate_ck
3 CHECK(StartDate < EndDate);

Table altered.

SQL>

Figure 4-11b ALTER TABLE—adding a CHECK constraint.

Let us try to add another foreign key constraint in the STUDENT table as
shown in Figure 4-12.As you see in Figure 4-12a, this error message is easier to under-
stand. To create a foreign key constraint, the parent table, whose primary key column
is referenced by the child table’s foreign key column, must already exist in the data-
base. Even the primary key column that is referenced must exist in the parent table
defined as the primary key. Remember that the two columns, the foreign key and the

SQL> ALTER TABLE student
2 ADD CONSTRAINT student_facultyid_fk
3 FOREIGN KEY (FacultyId) REFERENCES faculty(FacultyId);

REFERENCES faculty(FacultyId)
*

ERROR at one 3:
ORA-00942: table or view does not exist
SQL>

Figure 4-12a ALTER TABLE—unsuccessful.

primary key that it references, need not have the same name.The best solution in this
situation would be to create all tables without any foreign key constraints first, then
create tables using a CREATE TABLE statement with FOREIGN KEY constraints
to the reference tables already created. An alternate solution is to create all tables
with their constraints except for the foreign key constraint. Once all the tables are cre-
ated, use the ALTER TABLE statement to add the FOREIGN KEY constraint.

In Figure 4-12b, another try to create a foreign key has failed. The problem
with the query is the creation of a foreign key in the wrong table. The FacultyId col-
umn is common in the STUDENT and FACULTY tables, but remember the rule! A

ShahCh04v3.qxd 4/16/04 12:40 PM Page 85

86 Chap. 4 Oracle Tables: Data Definition Language (DDL)

SQL> ALTER TABLE faculty
2 ADD CONSTRAINT faculty_facultyid_fk FOREIGN KEY(FacultyId)
3 REFERENCES student(FacultyId);
REFERENCES student(FacultyId)

*

ERROR at line 3:
ORA-00270; no matching unique or key for this column-list

SQL>

Figure 4-12b ALTER TABLE—unsuccessful.

foreign key must reference a primary key. In our query, primary key FacultyId in the
FACULTY table is trying to reference a non–key column FacultyId in the
STUDENT table. It will definitely won’t work in Oracle!

Once the parent table FACULTY is created, the foreign key is successfully
created in the STUDENT table (see Fig. 4-12c).

Figure 4-12c ALTER TABLE—successful.

SQL> ALTER TABLE student
2 ADD CONSTRAINT student_facultyid_fk FOREIGN KEY(FacultyId)
3 REFERENCES Faculty(FacultyID);

Table altered.

SQL>

Now, let us add a NOT NULL constraint and a DEFAULT value to the Start-
Term and State columns, respectively, in the STUDENT table. If a student does not
have a start term, it is difficult for an academic department to track the student’s class
and projected date of graduation. If the college is located in the New Jersey area and
most of the students are from in-state, it is a good idea to add a default value to min-
imize having to enter data. A user can always overwrite the default value, but if it is
left blank or null, the default value is used by Oracle. To add such constraints, a
MODIFY clause is used with an ALTER TABLE statement. For example,

ALTER TABLE student MODIFY StartTerm CHAR(4)
CONSTRAINT student_startterm_nn NOT NULL;
ALTER TABLE student MODIFY State CHAR(2)
DEFAULT ‘NJ’;

Dropping a Column (Oracle8i Onward)

As you already know, Oracle8 and earlier versions do not allow you to remove a col-
umn from a table, but with Oracle8i onward, you can. Even so, only one column can
be dropped at a time. The column may or may not contain any data. When you drop

ShahCh04v3.qxd 4/16/04 12:40 PM Page 86

Altering an Existing Table 87

a column, there must be at least one column left in the table. In other words, you
can’t remove the last remaining column from a table. It is not possible to recover a
dropped column and its data. The general syntax is

ALTER TABLE tablename DROP COLUMN columnname;

Oracle9i also allows a user to mark columns as unused by using

ALTER TABLE tablename SET UNUSED(columnname);

The unused columns are like dropped columns. This is not a very good feature,
because the storage space used by unused columns is not released. They are not dis-
played with other columns or in the table’s structure, and the user can drop all unused
columns with the following statement. Setting a column to unused is quicker than
dropping a column, however, and it requires fewer system resources. You can remove
all unused columns when system resources are in less demand. The general syntax is

ALTER TABLE tablename DROP UNUSED COLUMNS;

If no columns are marked as unused, this statement does not return any error mes-
sages. Figure 4-13 shows setting a column as unused and then being dropped.

SQL> ALTER TABLE student
2 SET UNUSED(SocialSecurity);

Table altered.
SQL> ALTER TABLE student

2 DROP UNUSED COLUMNS;
Table altered.
SQL>

Figure 4-13 ALTER TABLE—dropping unused columns.

Dropping a Constraint

As you already know, you can view constraint information from the USER_CONS-
TRAINTS table or the USER_CONS_COLUMNS table. A dropped constraint is
no longer enforced by Oracle, and it does not show up in the list of USER_CONS-
TRAINTS or USER_CONS_COLUMNS. The general syntax is

ALTER TABLE tablename
DROP PRIMARY KEY|UNIQUE (columnname) |
CONSTRAINT constraintname [CASCADE];

For example,

ALTER TABLE major
DROP PRIMARY KEY CASCADE;

ShahCh04v3.qxd 4/16/04 12:40 PM Page 87

88 Chap. 4 Oracle Tables: Data Definition Language (DDL)

This statement drops the primary key constraint from the MAJOR table. The
CASCADE clause drops the dependent foreign key constraints, if any.You can drop
a constraint by using its name, which is why it is important to name all constraints
with a standard naming convention. For example,

ALTER TABLE employee
DROP CONSTRAINT employee_deptid_fk;

Enabling/Disabling Constraints

You may enable or disable constraints as needed. A newly created constraint is en-
abled automatically. A constraint verifies table data as they are added or updated.
This verification slows down the process, so you may want to disable a constraint if
you are going to add or update large volume of data. When you reenable the con-
straint, Oracle checks the validity of the data and for any violations.

You may disable multiple constraints with one ALTER TABLE statement,
but you may only enable one constraint at a time.The general syntax for enabling or
disabling constraint is

ALTER TABLE tablename
ENABLE | DISABLE CONSTRAINT constraintname;

You may enable or disable a primary key constraint with the following syntax
that does not use constraint name:

ALTER TABLE tablename ENABLE | DISABLE PRIMARY KEY;

There is no CASCADE clause with ENABLE. The DISABLE and ENABLE
clauses can also be used in a CREATE TABLE statement.

Renaming a Column (Oracle9i Version 9.2 Onward)

You can rename a column with the following statement:

ALTER TABLE tablename RENAME COLUMN oldname TO newname;

Renaming a Constraint (Oracle9i Version 9.2 Onward)

You can rename a constraint with the following statement:

ALTER TABLE tablename RENAME CONSTRAINT oldname TO newname;

Modifying Storage of a Table

You can change storage attributes of a table, such as NEXT, PCTFREE, and so, with
the following statement:

ALTER TABLE tablename STORAGE (NEXT nK);

ShahCh04v3.qxd 4/16/04 12:40 PM Page 88

Truncating a Table 89

DROPPING A TABLE

When a table is not needed in the database, it can be dropped. Sometimes, the exist-
ing table structure has so many flaws it is advisable to drop it and recreate it. When
a table is dropped, all data and the table structure are permanently deleted. The
DROP operation cannot be reversed, and Oracle does not ask “Are You Sure?”You
can drop a table only if you are the owner of the table or have the rights to do so.
Many other objects based on the dropped table are affected. All associated indexes
are removed. The table’s views and synonyms become invalid. The general syntax is

DROP TABLE tablename [CASCADE CONSTRAINTS];

For example,

DROP TABLE sample;

Oracle displays a “Table dropped” message when a table is successfully dropped. If
you add the optional CASCADE CONSTRAINTS clause, it removes foreign key
references to the table as well.

RENAMING A TABLE

You can rename a table provided you are the owner of the table.The general syntax is

RENAME oldtablename TO newtablename;

For example,

RENAME dept TO department;

Oracle will display a “Table renamed” message when this statement is executed.
(We will not change the DEPT table’s name and will still refer to it by its original
name later in this textbook.) The RENAME statement can be used to change name
of other Oracle objects, such as a view, synonym, or sequence, which we will cover in
a later chapter.

TRUNCATING A TABLE

Truncating a table is removing all records/rows from the table. The structure of the
table, however, stays intact. You must be the owner of the table with the DELETE
TABLE privilege to truncate a table. The SQL language has a DELETE statement
that can be used to remove one or more (or all) rows from a table, and it is reversible
as long as it is not committed.The TRUNCATE statement, on the other hand, is not
reversible. Truncation releases storage space occupied by the table, but deletion
does not. The syntax is

TRUNCATE TABLE tablename;

ShahCh04v3.qxd 4/16/04 12:40 PM Page 89

90 Chap. 4 Oracle Tables: Data Definition Language (DDL)

For example,

TRUNCATE TABLE employee;

Oracle displays a “Table truncated” message on this statement’s execution. The
EMPLOYEE table is an integral part of the N2 Corporation’s database, and you do
not want to truncate it unless you would like to enter all the employees’ data again!

The truncate operation releases all table storage except for the initially allo-
cated extent.You can “keep” all storage used by table with the REUSE STORAGE
clause. For example,

TRUNCATE TABLE tablename REUSE STORAGE;

ORACLE’S VARIOUS TABLE TYPES

Oracle9i uses various types of tables—permanent tables, temporary tables, index-
organized tables, and external tables. Permanent tables are used for storing data.
Temporary tables are used during a session or a transaction. Temporary tables are
like permanent tables, but they are not stored permanently.They store data during a
session or a transaction.Temporary tables are created with the CREATE GLOBAL
TEMPORARY TABLE statement. Index-organized tables are used for tables with
primary key values that are looked up frequently. Index-organized tables are created
with a CREATE TABLE tablename ORGANIZATION INDEX statement.
External tables are stored “outside” the database with CREATE TABLE tablename

ORGANIZATION EXTERNAL statement. These tables are based on flat
files, such as comma-delimited, double quotes–delimited or fixed-length files, whose
directory path is made known to Oracle with a CREATE DIRECTORY statement.
In most cases, the end user works with permanent data tables only.

SPOOLING

Spooling is a very handy feature. During a session, a user can redirect all statements,
queries, commands, and results to a file for later review or printout. The spooling
method creates a text file of all actions and their results. Everything you see on your
screen is redirected to the file, which is saved with an .lst extension by default.

To start spooling, go to the File menu in the window. Then, click on
Spool and Spool File in subsequent menus (see Fig. 4-14). You will be prompted to
enter a file name, which will be created with an .lst extension.

To stop spooling at any point, use the same menu to click on Spool Off (see
Fig. 4-14). When spooling is turned off, the file is saved to the disk and closed. The
spooled file can be opened in any text editor, such as Notepad, for viewing or print-
ing. In the classroom environment, I ask my students to spool all their work, which
includes required queries and their results. The students can submit their disk or the
printed hard copy.

SQL*Plus

Á

Á

ShahCh04v3.qxd 4/16/04 12:40 PM Page 90

Error Codes 91

You may start and stop spooling from the prompt with the

SQL> SPOOL filename

and

SQL> SPOOL OFF

commands, respectively.

ERROR CODES

If Oracle Error Help is installed on your system, you will be able to get to it by click-
ing on Once the error help screen is displayed,
click on the Index tab. Then, type the error code received from Oracle in the space
provided.When you are done typing, click on the Display button to get an explanation
of the error. The explanation of the error code is straightforward. The help function
shows the cause of the error and gives hints for corrective actions.

You may use online help from Oracle’s Web site by using the following URL:

http://otn.oracle.com/pls/db92/db92.error_search

To use the online help with error codes, follow three steps shown in Figure 4-15.
In step 1, type the error code in the text box (see Fig. 4-15a). In step 2, select a result
from Oracle’s search results (see Fig. 4-15b). In step 3, view the cause of the error and
the action required to rectify it (see Fig. 4-15c).

This online help utility requires you to sign up with The Oracle Technology
Network (OTN). The free membership to OTN has many benefits, including free
downloads of Oracle software products.

START : Oracle : OraHome92.

SQL7

Figure 4-14 Spool menu.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 91

92 Chap. 4 Oracle Tables: Data Definition Language (DDL)

Figure 4-15a Online help—step 1.

Figure 4-15b Online help—step 2.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 92

In a Nutshell . . . 93

In this chapter, you learned all the Data Definition Language (DDL) statements,
which enable you to create and modify a table’s structure. In the next chapter, you will
learn about Data Manipulation Language (DML) statements to populate tables with
the INSERT statement, to modify data using the UPDATE statement, and to remove
data using the DELETE statement.We will also learn to retrieve a table’s underlying
data with the SELECT statement and its various clauses.

IN A NUTSHELL . . .

� Oracle database tables are stored under a user’s account in an allocated table-
space on a server’s disk.

� Oracle object names can be up to 30 characters long and can use letters, num-
bers, and the $, #, and _ characters only. All names must start with a letter.

� Each column in a table is assigned a data type to specify the type of data to
be stored in it. Basic data types are CHAR (fixed-length character data),

Figure 4-15c Online help—step 3.

ShahCh04v3.qxd 4/16/04 12:40 PM Page 93

94 Chap. 4 Oracle Tables: Data Definition Language (DDL)

VARCHAR2 (variable-length character data), NUMBER (integer, fixed-
point decimal, and floating-point decimal values), and DATE (date and time
values). The data-type column also includes the size.

� Additional data types include LONG, NCHAR, CLOB, BLOB, NCLOB,
BFILE, and RAW.

� Constraints enforce rules for tables. Two types of constraints are integrity
constraint (primary key and foreign key) and value constraint (check, not
null, and unique). The constraints are named either by the user or by Oracle
using a standard convention. A constraint is defined at the column or table
level using slightly different syntax.

� A DDL statement, CREATE TABLE, is used for table creation. The cre-
ation of a table includes column names, data types, sizes of the columns, and
constraint definitions.

� Oracle provides the user with SQL statements and commands to
view the user’s tables, table structure, and constraint information.

� Oracle also provides the user with Data Dictionary tables and views for
information about user account, tables, tablespaces, constraints, and objects.

� The ALTER TABLE statement is used to modify an existing table’s struc-
ture.The modifications may include adding a new column, modifying an exist-
ing column, adding a constraint, or removing a constraint. Oracle8i and
Oracle9i do allow a user to drop a column from a table. In Oracle9i, a column
or constraint can also be renamed.There are restrictions imposed for certain
modifications.

� A table can be dropped from the database or renamed. A table can be trun-
cated to remove all its rows/records.

� Oracle error messages are displayed with error codes. A user can get more
information about the causes of an error and the action necessary to correct
it by using Oracle9i error messages from the Microsoft Windows environ-
ment or from Oracle’s online help.

� The spooling method is used to spool all queries, statements, and commands
along with their results to a text file.

EXERCISE QUESTIONS

True/False:
1. In Oracle9i, a table name cannot be one character long.
2. If a data value entered in a VARCHAR2 type field is longer than the actual size, the

value is truncated.
3. The NUMBER data type can be used for integer, fixed-point decimal, and floating-point

decimal values.

SQL*Plus

ShahCh04v3.qxd 4/16/04 12:40 PM Page 94

Chap. 4 Exercise Questions 95

4. Two tables may have constraints with same constraint name under a user’s database.
5. A foreign key must reference a primary key in another table, and both keys must have

same column name.
6. If you try to enter value “Database” in a CHAR(4) column, only “Data” will be stored in it.
7. The value “Basketball” will be stored with five trailing spaces in a VARCHAR2(15) column.
8. A composite primary key can be defined at table level only.
9. A column with UNIQUE constraint may not contain a null value.

10. The NOT NULL constraint is defined at the table level only.
11. A CHECK constraint cannot be written to check for null values.
12. The value 9999.99 is the largest possible value for a NUMBER(6,2) column.

Find the Valid/Invalid Table/Column Names:
1. CRS-SECTION.
2. SALARY_LEVEL.
3. Employee’sId.
4. Employee Id.
5. $SALARY.
6. Proj2000.
7. Qualification_Code_For_Employees.

Write the Appropriate Column Name, Data Type, and Size for the Following Columns:
1. Student’s date of birth.
2. Social Security number (without dashes).
3. Telephone number (with area code).
4. Employee’s gender.
5. Employee’s picture in a file.
6. Link to a Word document.
7. Customer’s last name.

Write the Constraint Definitions for the Following Constraints (Use Case-Study Tables in
Chapter 3):
1. Primary key in the DEPT table.
2. Foreign key DeptId in the EMPLOYEE table.
3. CHECK constraint for QualId in the EMPLOYEE table.
4. NOT NULL constraint for the MajorDesc column in the MAJOR table.
5. UNIQUE constraint for DeptName in the DEPT table.

Write answers for the following:
1. What is the use of data types? Name four basic data types, and state their use.
2. What are two types of constraints? Give two examples of each.
3. How are the constraints named?
4. Does Oracle allow a composite key? If so, how is it defined?

ShahCh04v3.qxd 4/16/04 12:40 PM Page 95

96 Chap. 4 Oracle Tables: Data Definition Language (DDL)

5. Can you change a column’s name in an existing table in Oracle9i? Can you delete a column
from a table?

6. Is it possible to add any type of constraint to an existing table? Are there any restrictions?
7. What are the differences between SQL and
8. How will you drop a table whose primary key is referenced by a foreign key in another

table? Give two possible ways to accomplish the task.
9. How will you make sure that the value used in GENDER CHAR(1) column is either

“M” or “F” only?
10. Name any three Oracle Data Dictionary tables, and give their use.
11. Can you reference a table that does not exist? Can you reference a table whose primary

key is not defined? Can you reference part of a composite primary key?
12. What is the use of STORAGE clause with INITIAL and NEXT attributes?
13. How do you release all storage space with TRUNCATE statement?

LAB ACTIVITY

1. a. Use SQL statements to create STUDENT, FACULTY, COURSE, CRSSECTION,
REGISTRATION, ROOM, TERM, LOCATION, MAJOR, and DEPARTMENT
tables in the IU College database tables as given in Chapter 3. Use com-
mands or Notepad to debug your statements’ errors, if any.
� Define a primary key constraint for each table. (Do not specify foreign keys yet.)
� Define NOT NULL, DEFAULT, UNIQUE, and CHECK constraints wherever

appropriate.
Before running your statements, start spooling to a file named CH4LAB1A.LST. When
all tables are created, stop spooling, and print the spooled file.
b. Now, add the required foreign key constraints for each table. Do not add any

records yet. Spool your statements and results to the CH4LAB1B.LST file, and
print it.

c. Spool to the CH4LAB1C.LST file, and print all table names from your account,
each table’s structures, and constraint information for each table.

2. Use SQL statements to create all six tables from the N2 Corporation database in
Chapter 3. If you have already created a DEPT table in Chapter 3’s Lab Activity, you
will skip it. Define the PRIMARY KEY, FOREIGN KEY, NOT NULL, DEFAULT,
CHECK, and UNIQUE constraints in the CREATE TABLE statement. If not possible,
use the ALTER TABLE statement to add a constraint. (Remember: The FOREIGN
KEY constraint requires existence of the referenced table.) Spool your statements
and results to the CH4LAB2.LST file, and print each table’s structure and constraints
as well.

SQL*Plus

SQL*Plus?

ShahCh04v3.qxd 4/16/04 12:40 PM Page 96

5

Working with Tables:

Data Management

and Retrieval

IN THIS CHAPTER . . .

� You will learn how to populate tables using Data Manipulation Language
(DML) statements.

� You will learn to change existing data and to remove unwanted
rows/records.

� Data retrieval queries on single tables are shown.
� Various clauses are used with data retrieval queries for filtering and sorting

of data.
� CASE structure is introduced.

DATA MANIPULATION LANGUAGE (DML)

SQL’s Data Manipulation Language (DML) consists of three statements—INSERT,
UPDATE, and DELETE. Data retrieval language, also known as a subset of DML,
consists of the SELECT statement and its clauses. Some authors consider all four as
DML statements. A new row is added to a table with the INSERT statement. Data in
existing rows are changed with the UPDATE statement.The DELETE statement re-
moves rows from a table. The SELECT statement retrieves data from tables, but it
does not affect the data in any way. In other words, the SELECT statement does not

ShahCh05v3.qxd 4/16/04 11:53 AM Page 97

98 Chap. 5 Working with Tables: Data Management and Retrieval

manipulate data; it only queries tables. The DML statements are not written perma-
nently to the database unless they are committed. Many times, students do not exit
properly from and they end up losing newly inserted rows or updated in-
formation.You can enter a COMMIT statement anytime to write DML statements to
the disk. You can use ROLLBACK to undo the last set of DML statements. You will
learn more about transactions in Chapter 9.

ADDING A NEW ROW/RECORD

The Data Manipulation Language (DML) statement INSERT is used to insert a
new row/record into a table.A user can insert values for all columns or a selected list
of columns in a record. The general syntax for the INSERT statement is

INSERT INTO tablename [(column1, column2, column3, . . .)]
VALUES (value1, value2, value3, . . .);

The column names are optional. If column names are omitted from the INSERT
statement, you must enter a value for each column. If you know the correct order of
column names, you can enter values in the same order following the VALUES key-
word. (Use the command DESCRIBE to display the table’s structure to
make sure.) If you insert values in the incorrect order and a numeric value is entered
for a character - (CHAR)-type column, Oracle will not accept the new row and will
generate an error message. If your statement is accepted, a “1 row created” message
is displayed on the screen.

If you do enter column names, they do not have to be in the same order as they
were defined in the table’s structure at the time of creation. Once you enter column
names, however, their respective values must be in the same order as the column
names. For example, let us add a new record to the STUDENT table in the Indo–US
(IU) College database:

INSERT INTO student (StudentId, Last, First, Street, City, State, Zip, StartTerm, BirthDate,
FacultyId, MajorId, Phone)
VALUES (‘00100’, ‘Diaz’, ‘Jose’, ‘1 Ford Avenue #7’, ‘Hill’, ‘NJ’, ‘08863’, ‘WN03’, ‘12-FEB-80’,
123, 100, ‘9735551111’);

When entering values, numeric data is not enclosed within quotes. The
CHAR- and DATE-type values are enclosed within single quotes. How do you
enter a character value that contains a single-quote character? For example,
‘Daddy’s Pizza Parlor’ will result in an error. You must type two single quotes to
enter a single-quote character. The solution is ‘Daddy’’s Pizza Parlor’. The first quo-
tation mark acts as an escape character for the second one.

The default format to enter the DATE value is DD-MON-YY. In Oracle8i, if a
two-digit year has a value greater than or equal to 50 (e.g., 60), it is stored as occurring
in the twentieth century (e.g., 1960). If a two-digit year has a value less than 50 (e.g., 10),
it is stored as occurring in the twenty-first century (e.g., 2010). The birth date of

SQL * Plus

SQL * Plus,

ShahCh05v3.qxd 4/16/04 11:53 AM Page 98

Adding a New Row/Record 99

15-APR-40 will be stored with the year as 2040. The student’s calculated age will re-
turn a negative number! In Oracle9i, the format DD-MON-YY as well as DD-
MON-YYYY are default formats. You are strongly advised to use a four-digit year.
If you want to enter a date in any other format, the TO_DATE function is used for
converting a character value to the date equivalent. For example,

TO_DATE(‘02/12/1980’, ‘MM/DD/YYYY’)
TO_DATE(‘FEB 12, 1980’, ‘MON DD, YYYY’)

A DATE-type column can store date as well as time values. If only the date value
is entered in a DATE-type column, the time value is set to the midnight (12:00 A.M.).
If only the time value is entered into a DATE-type column, the date is set to first of
the current month. For example, a time value is entered in the HireDate column of
the EMPLOYEE table with

TO_DATE(’01:15 P.M.’, ‘HH:MI P.M.’)

Then, the information is retrieved with the following format (try it after you learn
the SELECT statement later in this chapter):

TO_CHAR(HireDate, ‘DD-MM-YYYY HH:MI:SS P.M.’)

The result will show the date as the first of the month in which time was entered
along with the entered time.

Now, let us enter a new row into DEPT table in the NamanNavan (N2) Corpo-
ration’s database without using the column names:

INSERT INTO dept
VALUES(10, ‘Finance’, ‘Charlotte’, 123);

The DEPT table contains four columns, and the values in the previous state-
ment are in the correct order. While inserting values, you must remember that the
foreign key columns in a table must either have a null value or must already exist as
a primary key value in the table referenced by the foreign key.

For example, in the STUDENT table’s INSERT statement, the value for Fac-
ultyId and MajorId columns are cross-referenced by Oracle in the FACULTY and
MAJOR tables, respectively. If you have not populated those two parent tables,
your new record in the STUDENT table will not be accepted.You must populate ta-
bles without foreign keys first; in other words, the parent tables must be populated
before their child tables.

Rounding by INSERT

If you insert value 543.876 in a NUMBER(6,2) column, the precision is 4, and the
scale is 2. The resulting value will be 543.88, rounded to two decimal places, or a
scale of 2. The rounded value will be entered into the column.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 99

100 Chap. 5 Working with Tables: Data Management and Retrieval

Entering Null Values

Null values are allowed in non–primary key columns that do not have a NOT
NULL constraint. Check the ‘Null?’ display from the DESCRIBE command before
inserting a null value.

There are two methods for inserting a NULL value in a column:

1. Implicit method: In the implicit method, the column’s name is omitted
from the column list in an INSERT statement. For example,

INSERT INTO dept(DeptId, DeptName)
VALUES(50, ‘Production’);

In this example, the Location and EmployeeId columns are not included.
The new record will be inserted into the table with no values for those two
columns. It is allowed only if the NOT NULL constraint is not used for
them.

2. Explicit method: In the explicit method, the null value is used as a value
for a numeric column, and an empty string (‘’) is used for date or charac-
ter columns. For example,

INSERT INTO dept(DeptId, DeptName, Location, EmployeeId)
VALUES(60, ‘Personnel’, ‘Chicago’, NULL);

You will insert null in EmployeeId if you do not know the manager’s Em-
ployeeId for the newly created Personnel Department in Chicago.

Often, you do not know the value of a column and decide to use a null value
for it. If your table has records with null values, you have to update those records
once the actual values are known. That is additional data entry. One way to avoid
null values is by using a DEFAULT value on columns.

Entering Default Values

With Oracle9i, the INSERT statement has added syntax that lets you insert default
values with the key word DEFAULT in place of a value for a column. If a default
value is assigned to the column during the table’s creation, that default value is in-
serted into the column. If no default value is assigned to the column, the key word
DEFAULT will result into a null value for the column. Make sure there is no NOT
NULL constraint on that column; otherwise, your new row will not be inserted.

Substitution Variables

Inserting rows into a table is a very tedious task. In real-life tables, we are talking
about thousands of rows per table! There are screen designers, form creators, and so
on.An SQL statement does not have those fancy boxes or buttons.The SQL language

ShahCh05v3.qxd 4/16/04 11:53 AM Page 100

Adding a New Row/Record 101

does have substitution variables, which enable you to create an interactive SQL
script.When you execute the script, Oracle prompts you to enter a value for the sub-
stitution variable. The ampersand (&) character is used before the substitution vari-
able in the query. The substitution variables for CHAR- and DATE-type columns
are enclosed within a pair of single quotation marks. Figure 5-1 shows the use of
substitution variables and the interactive prompts displayed by Oracle.

Question: You just ran the SQL statement in Figure 5-1. How will you insert
the next record using the same statement?

Answer: The last SQL statement is in the buffer, so you will type a slash (/) to
reexecute the statement from the buffer. If you stored the statement in a
file, you can execute the same file again with the RUN or @ command.

If you execute an INSERT statement that contains a value containing the &
character, such as the value R&D in Figure 5-2, Oracle treats it as a substitution
variable. To avoid such a situation, you can disable the substitution-variable charac-
ter (&) with the following command:

SET DEFINE OFF

SQL * Plus

Conversely, you can turn it on with the SET DEFINE ON command. You can
also change the prefix with same command. For example, if you want to change the
prefix for substitution variable to !, you will use the following command:

SET DEFINE !

SQL> INSERT INTO dept(DeptId, DeptName, Location, EmployeeId)

2 VALUES(&dept_id, ’&dept_name’, ’&location’, &emp_id);

Enter value for dept_id: 70

Enter value for dept_name: Testing

Enter value for location: Miami

Enter value for emp_id: NULL

old 2: VALUES(&dept_id, ’&dept_name’, ’&location’, &emp_id)

new 2: VALUES(70, ’Testing’, ’Miami’, NULL)

1 row created.

SQL>

Figure 5-1 Substitution variables.

SQL> INSERT INTO dept
2 VALUES (99, ’R&D’, ’Windsor’, 111);

Enter value for d:

Figure 5-2 Value with &.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 101

102 Chap. 5 Working with Tables: Data Management and Retrieval

CUSTOMIZED PROMPTS

The substitution-variable prompts are standard. Oracle displays “Enter the value
for” followed by the name of the substitution variable. The command
ACCEPT is used for customized prompts. The ACCEPT command does not use an
ampersand in front of the variable name.ACCEPT, in fact, accepts values for substi-
tution variables that can be used later in other statements. If an ACCEPT statement
is used for a variable, the value of that variable, once entered, is remembered during
the session. You might not want to use the ACCEPT statement for a variable to be
used later in more than one INSERT statement.The general syntax is

ACCEPT variablename PROMPT ‘prompt message’

For an example, see Figure 5-3.

SQL * Plus

Once a variable is defined with & (substitution variable) or ACCEPT, its value
is known throughout that session. You can undefine such a variable with the

command UNDEFINE.

UPDATING EXISTING ROWS/RECORDS

Once data are added to the tables for various entities, they may not stay the same
forever. A female employee gets married and changes her last name, a student
changes his or her major, a customer/vendor moves to a new location, or an employee

SQL * Plus

SQL> ACCEPT dept_id PROMPT ’Please enter department number(10 to 99): ’

Please enter department number(10 to 99): 80

SQL> ACCEPT dept_name PROMPT ’Please enter department name(no nulls): ’

Please enter department name(no nulls): Accounting

SQL> ACCEPT location PROMPT ’Please enter location city: ’

Please enter location city: Monroe

SQL> ACCEPT manager PROMPT ’Please enter EmployeeId of Manager: ’

Please enter EmployeeId of Manager: NULL

SQL> INSERT INTO dept

2 VALUES(&dept_id, ’&dept_name’, ’&location’, &manager);

old 2: VALUES(&dept_id, ’&dept_name’, ’&location’, &manager)

new 2: VALUES(80, ’Accounting’, ’Monroe’, NULL)

1 row created.

SQL>

Figure 5-3 Custom prompt with ACCEPT.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 102

Relational Operator Meaning

Equal to
or Not equal to

Greater than
Greater than or equal to
Less than
Less than or equal to< �

<
> �

>
! �<>

�

Updating Existing Rows/Records 103

gets a salary increment. These are real-life possibilities. When you create tables, you
should use columns that are not very high maintenance. For example, you should
not use a column called AGE. The age changes every year for an individual, and it
also changes on different days for almost everybody.

In SQL, the UPDATE statement is used for such modifications to data. Only
one table can be updated at a time, but it is possible to change more than one column
at a time. The general syntax is

UPDATE tablename
SET column1 = newvalue [, column2 = newvalue, . . .]
[WHERE condition(s)];

The condition is optional, but in most cases, you would need to use it. If the condi-
tion is not used with UPDATE, all rows will be updated. The conditions are created
using column names, relational operators, and values. You already know that Oracle
is case sensitive as far as the values in single quotation marks are concerned.The re-
lational operators are shown in Figure 5-4.

Figure 5-4 Relational operators.

Suppose the student with ID 00103 in the IU College’s database switches major
from BS—Computer Science to BS—Telecommunications. We will write an update
statement to change the student’s MajorId in the STUDENT table. Figure 5-5 first
shows an unsuccessful update operation. We are trying to change MajorId to 700,
which did not work! There is no such value for MajorId in the MAJOR table, which
is being referenced by the foreign key in the STUDENT table. See Oracle’s error
code and error message, which point out the integrity constraint was violated. Then,
the figure shows that the value is changed to 600, which worked! In this figure, the
value is changed back to the original value of 500. The same UPDATE statement
without the WHERE clause would result in updating all students’ MajorId to 500.

There are other operators for writing conditions like AND, OR, BETWEEN
IN, and LIKE. We will learn more about them later in this chapter.Á AND,

ShahCh05v3.qxd 4/16/04 11:53 AM Page 103

104 Chap. 5 Working with Tables: Data Management and Retrieval

DELETING EXISTING ROWS/RECORDS

Deletion is another data maintenance operation.When employees leave the company
or students enroll but never start college, you might want to remove their information
from your database. In Oracle, the SQL statement DELETE is used for deleting un-
wanted rows. Its general syntax is

DELETE [FROM] tablename
[WHERE condition(s)];

The keyword FROM is optional. The WHERE clause adds a condition to the
DELETE statement. Once again, the condition is optional, but it is necessary. You
normally would delete only those records that meet a criterion.The DELETE state-
ment without a condition will result in a table with no rows. A DELETE statement
without a WHERE clause has same effect as a TRUNCATE statement. The only
difference is that the DELETE operation can be undone with ROLLBACK state-
ment (see Chapter 9), but the TRUNCATE operation makes the change permanent.

SQL> UPDATE student
2 SET MajorId = 700
3 WHERE StudentId = ’00103’;

UPDATE student
*
ERROR at line 1:
ORA-02291: integrity constraint (SYSTEM.STUDENT_MAJORID_FK) violated - parent
key not found

SQL> 2
2* SET MajorId = 700

SQL> c/700/600
2* SET MajorId = 600

SQL> 1
1 UPDATE student
2 SET MajorId = 600
3* WHERE StudentId = ’00103’

SQL> /

1 row updated.

SQL> 2
2* SET MajorId = 600

SQL> c/600/500
2* SET MajorId = 500

SQL> /

1 row updated.

SQL>

Figure 5-5 Unsuccessful and successful UPDATE statements.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 104

Retrieving Data from a Table 105

Figure 5-6 shows successful execution of a DELETE statement. If a row with de-
partment number 70 exists, it is deleted.

If you try to delete a record from a table whose primary key value is used in
another table’s foreign key column, Oracle will display an “Integrity constraint
violated - child record found” error message.The parent record that is referenced by
a child record cannot be removed. See Figure 5-7 for such an unsuccessful DELETE

Á

operation. In such cases, you may drop a constraint or temporarily disable it. A
dropped constraint is removed permanently, whereas a disabled constraint can be en-
abled later.

RETRIEVING DATA FROM A TABLE

The main purpose of the SQL language is for querying the database. You have al-
ready learned to create, alter, insert, update, and delete by using SQL statements.
The most important statement or query is the SELECT query. A user retrieves data
from the underlying table or tables with a SELECT query. The output can be sorted
and grouped, and information can be derived with the use of mathematical expres-
sions and built-in functions. In Chapter 1, we covered nine relational operations.
Now is the time to try those operations. The general syntax is

SELECT columnlist
FROM tablename;

The columns can be listed in any order. They do not have to be in the order

SQL> DELETE FROM dept
2 WHERE DeptId = 70;

1 row deleted.

SQL>

Figure 5-6 Successful DELETE statement.

SQL> DELETE FROM dept
2 WHERE DeptId = 20;

DELETE FROM dept
*
ERROR at line 1:
ORA-02292: integrity constraint (SYSTEM.EMPLOYEE_DEPTID_FK) violated - child
record found

SQL>

Figure 5-7 Unsuccessful DELETE statement.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 105

106 Chap. 5 Working with Tables: Data Management and Retrieval

given by the DESCRIBE command. For example, Figure 5-8 shows output from a
SELECT query. This query displays the last name and first name of all students
from the STUDENT table. The Last and First columns are vertical slices of the
STUDENT table, a projection operation.

As you see, the column names are displayed in uppercase. In the STUDENT
table, the column Last comes before the column First, but the output displays them
in the order given in the SELECT query. By default, character data is displayed with
left justification and numeric data with right justification.

Select (*)

If you want to see all columns in a table, you do not have to list them all. You can use
an asterisk in place of the column list, and all columns will be displayed in the
same order as the underlying table structure. Figure 5-9 depicts use of the character *.

1*2

SQL> SELECT Last, First
2 FROM student;

LAST FIRST
-
Diaz Jose
Tyler Mickey
Patel Rajesh
Rickles Deborah
Lee Brian
Khan Amir

6 rows selected.

SQL>

Figure 5-8 Output from a SELECT query.

SQL> SELECT *
2 FROM course;

COURSE TITLE CREDITS PREREQ
- - - - - - -
EN100 Basic English 0
LA123 English Literature 3 EN100
CIS253 Database Systems 3
CIS265 Systems Analysis 3 CIS253
MA150 College Algebra 3
AC101 Accounting 3

6 rows selected.

SQL>

Figure 5-9 SELECT *.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 106

Retrieving Data from a Table 107

In output from a SELECT statement, left justification is used for CHAR-,
VARCHAR2-, and DATE-type columns, and right justification is used for NUM-
BER-type columns. The default column width for displaying a NUMBER column is
9. The display width for character columns is based on column’s width.

Two problems with displaying all rows and all columns are the screen’s default
line size and page size. After 80 columns, the row display wraps to the next line.
After displaying 11 rows under column headings, column headings are repeated for
more rows. You can change these values from the Options menu in the
environment.

The environment variables can be changed by clicking on the Options menu in
then by selecting Environment from it. Soon, an Environment window will

pop up, and you can select linesize from the list of environment variables.Then, change
the value from Default to Current, and type in the new value.The default value for line
size is 80. Similarly, pagesize and other variables can be set (see Fig. 5-10). Alternately,
you can type SET commands at the prompt. For example,

SET LINESIZE 150

SQL7

SQL * Plus,

SQL * Plus

Figure 5-10 Setting environment variable line size.

Figures 5-11a and 5-11b show output from a SELECT query with a default line-
size of 80 and output after changing the linesize to a higher value. You can get infor-
mation about environment variables by using the command SHOW ALL.

You will notice that the queries, which return less than six rows, do not get
feedback from Oracle stating the number of rows returned. By default, Oracle sends
a feedback message for queries returning six or more rows only. If you would like
feedback for all queries irrespective of number of rows returned, use the following
command in the beginning of your session:

SET FEEDBACK 1

SQL * Plus

ShahCh05v3.qxd 4/16/04 11:53 AM Page 107

108 Chap. 5 Working with Tables: Data Management and Retrieval

SQL> SELECT * FROM student;

STUDE LAST FIRST STREET CITY
-
ST ZIP STAR BIRTHDATE FACULTYID MAJORID PHONE
- - - -
00100 Diaz Jose 1 Ford Avenue #7 Hill
NJ 08863 WN03 12-FEB-83 123 100 9735551111

00101 Tyler Mickey 12 Morris Avenue Bronx
NY 10468 SP03 18-MAR-84 555 500 7185552222

00102 Patel Rajesh 25 River Road #3 Edison
NJ 08837 WN03 12-DEC-85 111 400 7325553333

STUDE LAST FIRST STREET CITY
-
ST ZIP STAR BIRTHDATE FACULTYID MAJORID PHONE
- - - -
00103 Rickles Deborah 100 Main Street Iselin
NJ 08838 FL02 20-OCT-70 555 500 7325554444

00104 Lee Brian 2845 First Lane Hope
NY 11373 WN03 28-NOV-85 345 600 2125555555

00105 Khan Amir 213 Broadway Clifton
NJ 07222 WN03 07-JUL-84 222 200 2015556666

6 rows selected.

SQL>

Figure 5-11a Output before setting LINESIZE.

SQL> SET LINESIZE 150
SQL> SELECT * FROM student;

STUDE LAST FIRST STREET CITY ST ZIP STAR BIRTHDATE FACULTYID MAJORI
-
00100 Diaz Jose 1 Ford Avenue #7 Hill NJ 08863 WN03 12-FEB-83 123 10
00101 Tyler Mickey 12 Morris Avenue Bronx NY 10468 SP03 18-MAR-84 555 50
00102 Patel Rajesh 25 River Road #3 Edison NJ 08837 WN03 12-DEC-85 111 40
00103 Rickles Deborah 100 Main Street Iselin NJ 08838 FL02 20-OCT-70 555 50
00104 Lee Brian 2845 First Lane Hope NY 11373 WN03 28-NOV-85 345 60
00105 Khan Amir 213 Broadway Clifton NJ 07222 WN03 07-JUL-84 222 20

6 rows selected.

SQL>

Figure 5-11b Output after setting LINESIZE.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 108

Retrieving Data from a Table 109

Conversely, you can suppress feedback by using the following command:

SET FEEDBACK OFF

DISTINCT Function

The DISTINCT function is used to suppress duplicate values. The word DISTINCT
is used right after the keyword SELECT and before the column name.

Let us see the difference in result from two SELECT queries, with and without
the DISTINCT function. Figure 5-12a shows the SELECT statement without DIS-
TINCT, which outputs 11 rows with some duplicate values. Figure 5-12b shows the
SELECT statement with DISTINCT, which eliminates duplicate values and returns
three unique values only.

SQL> SELECT Building
2 FROM location;

BUILDIN
- - - - - - -
Gandhi
Gandhi
Kennedy
Kennedy
Nehru
Nehru
Gandhi
Kennedy
Kennedy
Gandhi
Gandhi

11 rows selected.

SQL>

Figure 5-12a SELECT without DISTINCT.

SQL> SELECT DISTINCT Building
2 FROM location;

BUILDIN
- - - - - - -
Gandhi
Kennedy
Nehru

SQL>

Figure 5-12b SELECT with DISTINCT.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 109

110 Chap. 5 Working with Tables: Data Management and Retrieval

Column Alias

When a SELECT query is executed, uses the column’s name as the col-
umn heading. Normally, the user gives abbreviated names for columns, and they are
not very descriptive. For example, in Figure 5-13, the column name Title is used for
course name and PreReq for requirement.

SQL * Plus

SQL> SELECT CourseId AS “COURSE”, Title “Course Name”,
2 PREREQ Requirement
3 From course;

COURSE Course Name REQUIR
- - - - - - - - - - - - - - - - - - - - - - - - - - -
EN100 Basic English
LA123 English Literature EN100
CIS253 Database Systems
CIS265 Systems Analysis CIS253
MA150 College Algebra
AC101 Accounting

6 rows selected.

SQL>

Figure 5-13 Column aliases.

Column aliases are useful, because they let you change the column’s heading.
When a calculated value is displayed, the mathematical expression is not displayed
as the column heading, but the column alias is displayed. The column alias is written
right after the column name with the optional keyword AS in between. The alias
heading appears in uppercase by default. If an alias includes spaces or special char-
acters or if you want to preserve its case, you must enclose it in double quotation
marks (“ ”). The general syntax is

SELECT columnname [AS] alias . . .

In the example in Figure 5-13, “Course Name” is an alias for Title, and Re-
quirement is an alias for PreReq. The case is preserved for the first two aliases only,
because they were enclosed within double quotes. Notice that the word AS is used
for the first column but is omitted for the second and third columns. This is done for
illustration purpose; you may use it in a query or omit it altogether.

COLUMN Command

In Figure 5-13,you may have noticed that the column alias REQUIREMENT appeared
as REQUIR. Can you figure out the reason? The PreReq column has a data type of
VARCHAR2(6), and displayed only first six character of the column
heading. COLUMN command allows you to specify format columns forSQL * Plus’

SQL * Plus

ShahCh05v3.qxd 4/16/04 11:53 AM Page 110

Retrieving Data from a Table 111

columns. The general syntax of the COLUMN command is

COLUMN columnname FORMAT formattype

For example,

COLUMN State FORMAT A5
COLUMN Salary FORMAT $999,999

In the examples above, the State column is given the alpha format with display
width of five. In the STUDENT table, the State column has a data type of
CHAR(2), and that displays only the first two characters of the column name in the
output. The new format will display the entire column name as a heading and use
five columns to display state values. The numeric format applied to the Salary col-
umn will display salary values in currency format (e.g., $265,000).

In Figure 5-14, the CourseId and Credits columns are displayed before using
formatting columns with the COLUMN command and then after applying those
columns.The SELECT statement is in the buffer, so we could execute it with a forward

SQL> SELECT CourseId, Credits, PreReq
2 From course;

COURSE CREDITS PREREQ
- - - - - - - - - - - - - - - - - - - - -
EN100 0
LA123 3 EN100
CIS253 3
CIS265 3 CIS253
MA150 3
AC101 3

6 rows selected.

SQL> COLUMN CourseId FORMAT A8
SQL> COLUMN Credits FORMAT 9.99
SQL> /

COURSEID CREDITS PREREQ
-
EN100 .00
LA123 3.00 EN100
CIS253 3.00
CIS265 3.00 CIS253
MA150 3.00
AC101 3.00

6 rows selected.

SQL>

Figure 5-14 COLUMN command.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 111

112 Chap. 5 Working with Tables: Data Management and Retrieval

slash (/) at the prompt. Though the COLUMN command was used after ini-
tial execution of the SELECT statement, the COLUMN command, being an

command, did not replace it in the buffer. Notice the number of columns
used in displaying CourseId and also its heading before and after use of the COL-
UMN command. For the Credits column, the change is in the way values are dis-
played after use of the COLUMN command.

Concatenation

The word concatenation is a common word in computer jargon, but in daily life, it is
seldom used. Concatenation means joining or linking. In SQL, concatenation joins a
column or a character string to another column. The result is a column that is a
string or a sequence of characters. Two vertical bars or pipe symbols are used as
the concatenation operator. The symbol appears on your keyboard with the back-
slash (\) character. You will need to depress the SHIFT key to enter the character.
Figure 5-15 shows the result of concatenating two columns in the EMPLOYEE
table. The two columns’ values are joined without any space separating them.

1 72

SQL * Plus

SQL7

In Figure 5-16, we have altered the output so that the names are displayed with
the last name and first name separated by a comma and a space. We need to use a
character string to accomplish it.

Now, try this:

SELECT First || ‘ ‘ || Last || ‘was born on ‘ || Birthdate
FROM student;

SQL> SELECT Lname | | Fname
2 FROM employee;

LNAME | | FNAME
- -
SmithJohn
HoustonLarry
RobertsSandi
McCallAlex
DevDerek
ShawJinku
GarnerStanley
ChenSunny
ZEESONIA

9 rows selected.

SQL>

Figure 5-15 Concatenation.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 112

Arithmetic Operations 113

ARITHMETIC OPERATIONS

The arithmetic expressions are used to display mathematically calculated data.These
expressions use columns, numeric values, and arithmetic operators (see Fig. 5-17).
When arithmetic operators are used with columns in the SELECT query, the under-
lying data are not changed. The calculations are for output purposes only.

SQL> SELECT Lname | | ’, ’ | | Fname | | ’ makes $’ | |
2 Salary “Employee Salary Info”
3 FROM employee;

Employee Salary Info
- -
Smith, John makes $265000
Houston, Larry makes $150000
Roberts, Sandi makes $75000
McCall, Alex makes $66500
Dev, Derek makes $80000
Shaw, Jinku makes $24500
Garner, Stanley makes $45000
Chen, Sunny makes $35000

8 rows selected.

SQL>

Figure 5-16 Concatenation with character strings and columns.

Figure 5-17 Arithmetic operators.

Operator Use

* Multiplication
/ Division

Addition
Subtraction�

�

Order of Operation

The order of operation is as follows:

� Whatever is in parentheses is done first.
� Multiplication and division have higher precedence than addition and sub-

traction.
� If more than one operator of the same precedence is present, the operators

are performed from left to right.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 113

114 Chap. 5 Working with Tables: Data Management and Retrieval

As you see in Figure 5-18, if the column alias is not used, the expression is dis-
played as the column heading. It is optional to leave a space on both sides of an
arithmetic operator. One other peculiar thing is the total of Salary and Commission.
When a Salary value is added to a null value in the Commission column, the total is
a null value. To handle null values, the expression can be changed to salary NVL
(Commission, 0), where NVL is a function that replaces a NULL value with the sec-
ond argument in parentheses—in this case, a zero—for arithmetic operation. We
will revisit the NVL function shortly. Remember that any arithmetic operation with
a null value returns a null value as result.

�

RESTRICTING DATA WITH A WHERE CLAUSE

When we used the SELECT query in Fig. 5-8 earlier, we restricted the number of
columns to only two.This was an example of a projection operation. Remember that
the projection operation returns “vertical slices” or columns from a table! (This was
covered in Chapter 1). In Figure 5-9, we basically displayed all columns. In both
cases, all rows from the table were displayed. Many times, you don’t want to see all
the rows from a table, only those rows that meet a criteria.A WHERE clause is used
with the SELECT query to restrict the rows that are picked. It is the implementa-
tion of a selection operation. The WHERE clause uses a simple condition or a com-
pound condition. The rows that satisfy the supplied conditions are displayed in the
output. The syntax of SELECT changes a little with an added WHERE clause. The
general syntax of the WHERE clause is

SELECT columnlist
FROM tablename
[WHERE condition(s)];

SQL> SELECT Lname, Fname, Salary+Commission
2 FROM employee;

LNAME FNAME SALARY+COMMISSION
- -
Smith John 300000
Houston Larry 160000
Roberts Sandi
McCall Alex
Dev Derek 100000
Shaw Jinku 27500
Garner Stanley 50000
Chen Sunny

8 rows selected.

SQL>

Figure 5-18 Arithmetic operation with null values.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 114

Restricting Data with a WHERE Clause 115

The conditions are written using column names; relational (see Fig. 5-4), logical (see
Fig. 5-19), and other comparison operators (see Fig. 5-21); literal values; mathematical
expressions; and built-in functions.

You are familiar with the arithmetic operators and relational operators al-
ready. The logical operators AND and OR work with two conditions, whereas NOT
works with only one condition. All three return a TRUE or a FALSE result. The
truth table in Figure 5-20 shows the working of AND and OR operators.

Other special comparison operators are given in Figure 5-21. The IS NULL
operator checks for a null value. It returns TRUE for a null value and FALSE for a
not null value. The BETWEEN AND operator checks for a range of values
using lower and upper limits. The IN operator is an alternate and shorter way of
writing OR conditions. The LIKE operator is used with wild cards for pattern
matching.

In this section, we will give many examples of restricted data retrieval. First,
the IU College database has a few thousand students. The administration wants to
identify students who started in the Winter 2003 term. We have used a few sample

Á

Logical Operator Meaning

AND Returns TRUE only if both conditions are true.
OR Returns TRUE if one or both conditions are true.

NOT Returns TRUE if the condition is false.

Figure 5-19 Logical operators.

AND OR

TRUE AND TRUE OR
TRUE AND TRUE OR
FALSE AND FALSE OR
FALSE AND FALSE OR
NULL AND NULL OR
NULL AND NULL OR
NULL AND NULL OR NULL = NULLNULL = NULL

FALSE = NULLFALSE = FALSE
TRUE = TRUETRUE = NULL
FALSE = FALSEFALSE = FALSE
TRUE = TRUETRUE = FALSE

FALSE = TRUEFALSE = FALSE
TRUE = TRUETRUE = TRUE

Figure 5-20 AND and OR.

Operator Meaning

IS NULL Is a null value.
BETWEEN AND Is between a range of values (both included).

IN Match any value from a list (an alternate way to write OR).
LIKE Match a value using wild cards.

Á

Figure 5-21 Other comparison operators.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 115

116 Chap. 5 Working with Tables: Data Management and Retrieval

records in each table for simplicity. Based on the rows entered, we will get output as
given in Figure 5-22.

The sample STUDENT table has six rows, but only four StartTerm values
match WN03. When character values are tested in conditions, Oracle is case sensi-
tive. Use of the value wn03 would have returned no rows because of the lowercase
letters. The character and date values are enclosed within single quotation marks.

In Figure 5-23, no rows are selected from the query, even though one depart-
ment in the N2 Corporation database is located there. The problem here is the all-
uppercase value in the query. The actual data are in proper case, or in initcap. We
will learn character functions soon to avoid these types of problems.

SQL> SELECT StudentId, Last, First
2 FROM student
3 WHERE StartTerm = ’WN03’;

STUDE LAST FIRST
-
00100 Diaz Jose
00102 Patel Rajesh
00104 Lee Brian
00105 Khan Amir

SQL>

Figure 5-22 Data retrieval with the WHERE clause.

SQL> SELECT *
2 FROM dept
3 WHERE Location = ’MONROE’;

no rows selected
SQL>

Figure 5-23 Case sensitivity.

Let us try another relational operator in the condition.The president of the N2
Corporation wants to find out the name and department number of all employees
who make $50,000 or more in salary only. The president will be surprised if he does
not see his name in the list in Figure 5-24!

Let us say it is time to schedule courses for the next term. The Accounting de-
partment wants to schedule a course in a classroom that accommodates 40 to 45 stu-
dents.We can perform this query by using two conditions with the AND operator or by
using the BETWEEN AND operator. Figure 5-25 uses a BETWEEN AND op-
erator with 40 as the lower limit and 45 as the upper limit. The same condition can be
written as a compound condition with the logical operator AND as given in Fig. 5-26.

ÁÁ

ShahCh05v3.qxd 4/16/04 11:53 AM Page 116

Restricting Data with a WHERE Clause 117

SQL> SELECT Lname, Fname, Salary, DeptId
2 FROM employee
3 WHERE Salary >= 50000;

LNAME FNAME SALARY DEPTID
-
Smith John 265000 10
Houston Larry 150000 40
Roberts Sandi 75000 10
McCall Alex 66500 20
Dev Derek 80000 20

5 rows selected.

SQL>

Figure 5-24 Relational operator 7 = .

SQL> COL RoomNo FORMAT A6
SQL> COL RoomType FORMAT A8
SQL> SELECT Building, RoomNo, Capacity, RoomType

2 FROM location
3 WHERE Capacity BETWEEN 40 AND 45;

BUILDIN ROOMNO CAPACITY ROOMTYPE
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Nehru 309 45 C
Kennedy 206 40 L

SQL>

Figure 5-25 BETWEEN AND operator.Á

Figure 5-26 Compound condition with the AND operator.

SQL> SELECT Building, RoomNo, Capacity, RoomType
2 FROM location
3 WHERE Capacity >= 40 AND Capacity <= 45;

BUILDIN ROOMNO CAPACITY ROOMTYPE
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Nehru 309 45 C
Kennedy 206 40 L

SQL>

When the relational and logical operators are used together, the order of
precedence is as follows if all operators exist:

� Whatever is in parentheses is performed first.
� Relational operators are performed second.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 117

118 Chap. 5 Working with Tables: Data Management and Retrieval

� The NOT operator is performed third.
� The AND operator is performed fourth.
� The OR operator is performed last.

We can write compound conditions with multiple operators and columns. Say
we are looking for employees with a salary in the range of $50,001 to $100,000 and
belonging to department 10. We can further restrict data by adding another condi-
tion to check for the Depart Id (see Fig. 5-27).

The BETWEEN AND operator can also be applied to character values to
find names starting with a range of characters. With character values, the operator
checks for the first character of column values (see Fig. 5-28).

Á

The N2 Corporation is conducting a study regarding their employees’ qualifi-
cations. The company wants to identify all employees with bachelors, masters, and
doctorate degrees. The corresponding qualification codes are 3, 2, and 1. The most
appropriate operator is OR, because the employee has to have one of the three
codes (see Fig. 5-29). The same result can be obtained by using the IN operator in
place of three conditions and two OR conjunctions. For example,

WHERE QualId IN(3, 2, 1);

SQL> SELECT Lname, Fname, Salary, DeptId
2 FROM employee
3 WHERE Salary BETWEEN 50001 AND 100000
4 AND DeptId = 10;

LNAME FNAME SALARY DEPTID
- -
Roberts Sandi 88275 10

SQL>

Figure 5-27 Compound condition using two columns.

SQL> SELECT Lname, Fname
2 FROM employee
3 WHERE Lname BETWEEN ’M’ AND ’Z’;

LNAME FNAME
- -
Smith John
Roberts Sandi
McCall Alex
Shaw Jinku

SQL>

Figure 5-28 BETWEEN AND operator with character values.Á

ShahCh05v3.qxd 4/16/04 11:53 AM Page 118

Restricting Data with a WHERE Clause 119

Similarly, if we want to find out the names of all students in the IU College
database who are from New York and New Jersey, we can use the OR operator.What
if we are looking for students from New York, New Jersey, Connecticut, Delaware,
and Pennsylvania? With OR, we will need five conditions, so in this case, the IN op-
erator is preferable. Figure 5-30 shows a different example using the of IN operator
to find faculty members who belong to department 1, 2, or 3.

Suppose we change the condition of Figure 5-30 to WHERE DeptId NOT IN
(1, 2, 3). What will be the outcome? The NOT operator, when used with other oper-
ators, negates the result.

In the EMPLOYEE table, there is information about the employee’s immediate
supervisor to whom he or she reports. Is there any employee who does not have a
supervisor? If so, then either the information is missing or the employee has the
highest position in the company. Let us search for such employees in Figure 5-31.

SQL> SELECT Lname, Fname, Salary, DeptId, QualId
2 FROM employee
3 WHERE QualId=1 OR QualId=2 OR QualId=3;

LNAME FNAME SALARY DEPTID QUALID
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Smith John 265000 10 1
Houston Larry 150000 40 2
Roberts Sandi 75000 10 2
Dev Derek 80000 20 1
Chen Sunny 35000 10 3

5 rows selected.

SQL>

Figure 5-29 OR operator.

SQL> SELECT Name, Phone, DeptId
2 FROM faculty
3 WHERE DeptId IN(1,2, 3);

NAME PHO DEPTID
-
Jones 525 1
Williams 533 2
Mobley 529 1
Vajpayee 577 2
Sen 579 3
Collins 599 3

SQL>

Figure 5-30 IN operator.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 119

120 Chap. 5 Working with Tables: Data Management and Retrieval

Fortunately, only one employee is without supervisor information, and this
employee happens to hold the president’s position. If more such records were
found, data-entry personnel would have to UPDATE that information. Have an-
other look at the figure. The first two times, no rows are selected with conditions

and The ony way to check for null values is
with the IS NULL operator.

Similarly, we can check for rows with no null value in a column. In other words,
we would like to see rows with values in a column. For example, the EMPLOYEE
table in the N2 Corporation database has rows with commission and also has rows
with a null value for the commission. John Smith is the only employee in depart-
ment 10 with a NOT NULL value in the commission column (see Fig. 5-32).

Supervisor = ‘’.Supervisor = NULL

SQL> SELECT Lname, Fname, Supervisor
2 FROM employee
3 WHERE Supervisor = NULL;

no rows selected

SQL> SELECT Lname, Fname, Supervisor
2 FROM employee
3 WHERE Supervisor = ”;

no rows selected

SQL> SELECT Lname, Fname, Supervisor
2 FROM employee
3 WHERE Supervisor IS NULL;

LNAME FNAME SUPERVISOR
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Smith John

SQL>

Figure 5-31 IS NULL operator.

SQL> SELECT Lname, Fname, Salary, Commission
2 FROM employee
3 WHERE Commission IS NOT NULL
4 AND DeptId = 10;

LNAME FNAME SALARY COMMISSION
- -
Smith John 265000 35000

SQL>

Figure 5-32 IS NOT NULL operator.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 120

Restricting Data with a WHERE Clause 121

Wild Cards

You have already seen examples of a search for a string value.There are times, how-
ever, when you do not know the exact string value. In these cases, you can select
rows that match a pattern of characters. Such a search is known as a wild-card
search. There are two wild cards for a pattern search. Figure 5-33 explains the use of
these wild cards.

A search with the wild cards requires you to use the LIKE operator. In the col-
lege’s database, we want to see the information about faculty members whose names
start with the letter C. All faculty names start with an uppercase letter. Oracle is case
sensitive, so a c in place of a C will not return any faculty names. Figure 5-34 has a
query that searches for such faculty names.

Similarly, if we want to find out the names of employees hired during the 1960s,
we can look for hire dates that fall between January 1, 1960 and December 31, 1969.
Would the BETWEEN AND operator be the best choice for it? Not really! We
can use a combination of both wild cards to achieve the same result. We have two
employees with hire dates in the 1960s. Figure 5-35 uses ‘%6_’, which means that the
date starts with any characters, the second-to-last character is a 6, and the last char-
acter could be anything. In the two case-study databases, none of the tables uses a
value that actually uses the character % or_.

Á

Wild Card Use

% Represents zero or more characters.

_(Underscore) Represents any one character.

Figure 5-33 Wild cards.

SQL> SELECT Name, Phone
2 FROM faculty
3 WHERE Name LIKE ’C%’;

NAME PHO
- - - - - - - - - - - - - - - - - -
Chang 587
Collins 599

2 rows selected.

SQL>

Figure 5-34 Wild-card %.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 121

122 Chap. 5 Working with Tables: Data Management and Retrieval

Question: How do you look for a value that has a wild-card character embed-
ded in it?

Answer: You use an escape character. SQL does not provide any particular
character as an escape character, but you can specify one for the query. The
WHERE clause will look like this:

WHERE column LIKE ‘%/_%’ ESCAPE ‘/’;

The first % means the column value starts with any characters in the beginning. The
second % means the value ends with any characters.The characters /_ mean there is a
_ character in the value.The character / is used as the escape character, which changes
the meaning of _ from a wild card to the underscore character.You may use any char-
acter as an escape character, which is defined following the key word ESCAPE.

SORTING

The order of rows in a table is arbitrary.You can insert rows in any order, and you do
not have control over where rows will be inserted.When you type a SELECT query,
the order of rows is not defined. You may want to see rows in a specific order, how-
ever, based on a column or columns. It is not necessary to display a sort column in
the SELECT clause. For example, you may want to see employees in alphabetical
order by their name, employees with the highest-paid employee first and the lowest-
paid employee last, or students by their major in alphabetical order.

The ORDER BY clause is used with the SELECT query to sort rows in a table.
The rows can be sorted in ascending or descending order.The rows can also be sorted
based on one or more columns. The expanded syntax of SELECT given here uses an
ORDER BY clause, which is always used last in the statement. The general syntax is

SELECT columnlist
FROM tablename
[WHERE condition(s)]
[ORDER BY column|expression [ASC|DESC]];

SQL> SELECT Lname, Fname, HireDate
2 FROM employee
3 WHERE HireDate LIKE ’%6_’;

LNAME FNAME HIREDATE
- -
Smith John 15-APR-60
Houston Larry 19-MAY-67

2 rows selected.

SQL>

Figure 5-35 Wild-cards % and _.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 122

Sorting 123

In the syntax, ASC stands for ascending order. The default order is ascending, so
there is no need to type ASC for ascending order.The keyword DESC stands for de-
scending or reverse order.

In an ascending sort, numeric values are displayed from the smallest to the
largest, character values are displayed in alphabetical order, and date values are dis-
played with the earliest date first (see Fig. 5-36).The null values are displayed last, in
ascending order. In descending order, the effect is reversed for all type of values; the
null values are displayed first in the descending order.

You can display null values first in a sort in ascending order by using the NULLS
FIRST option.Try the following two statements, and see the difference in output:

SELECT CourseId, PreReq FROM course ORDER BY PreReq;
SELECT CourseId, PreReq FROM course ORDER BY PreReq NULLS FIRST;

In the next four examples, we will perform an ascending sort by one column
(see Fig. 5-37), a descending sort by one column (see Fig. 5-38), a sort by column
alias (see Fig. 5-39), and a sort by multiple columns (see Fig. 5-40). First, let us dis-
play all students in alphabetical order. The ORDER BY clause will use the Last

Type of Value Ascending Sort Order

Numeric Lowest to highest value
Character Alphabetical order
Date Earliest to latest date

Figure 5-36 Ascending sort order.

SQL> SELECT Last, First
2 FROM student
3 ORDER BY Last;

LAST FIRST
- -
Diaz Jose
Khan Amir
Lee Brian
Patel Rajesh
Rickles Deborah
Tyler Mickey

6 rows selected.

SQL>

Figure 5-37 Single-column sort.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 123

124 Chap. 5 Working with Tables: Data Management and Retrieval

SQL> SELECT Lname, Fname, Salary
2 FROM employee
3 WHERE DeptId = 30
4 ORDER BY Salary Desc;

LNAME FNAME SALARY
- -
Garner Stanley 45000
Shaw Jinku 24500

SQL>

Figure 5-38 Descending order sort.

SQL> SELECT Lname || ’, ’ || Fname AS fullname,
2 Salary / 12 AS monthlysalary
3 FROM employee
4 WHERE DeptId = 10
5 ORDER BY monthlysalary
6 /

FULLNAME MONTHLYSALARY
- -
Chen, Sunny 2916.66667
Roberts, Sandi 6250
Smith, John 22083.3333

3 rows selected.

SQL>

Figure 5-39 Sort by an alias.

SQL> SELECT Lname, Fname, Salary, DeptId
2 FROM employee
3 ORDER BY DeptId, Salary Desc;

LNAME FNAME SALARY DEPTID
- -
Smith John 265000 10
Roberts Sandi 75000 10
Chen Sunny 35000 10
Dev Derek 80000 20
McCall Alex 66500 20
Garner Stanley 45000 30
Shaw Jinku 24500 30
Houston Larry 150000 40

8 rows selected.

SQL>

Figure 5-40 Multiple-column sort.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 124

Revisiting Substitution Variables 125

column as the sort field (see Fig. 5-37). In this example, if the optional word ASC is
added to the ORDER BY clause, the sort clause will look like this:

ORDER BY Last ASC;

Now, let us find employees with their salaries in descending order (see Fig. 5-38).
The employee with the highest salary will be at the top, and the employee with the
lowest salary will be at the bottom. We will restrict it to employees belonging to de-
partment 30 only. There are only two employees in department 30, and the result
shows the employee with the higher salary first.

Next, let us use an expression in the SELECT statement and give it a column alias.
We will use the column alias as our sort column.The alias monthlysalary represents the
monthly salary of each employee, and it is also used for sorting data (see Fig. 5-39).

In our next example, we will sort by two different columns, and each column
will be sorted in a different order. In case of a sort by multiple columns, the first
column is the primary sort column, and the second column is the secondary sort
column. The rows are sorted based on the primary sort column first. Then, the
rows with the same value in the primary sort columns are sorted within their
group using the secondary sort column. For example, in sorting the EMPLOYEE
table using DeptId as the primary sort column in ascending order and Salary as
the secondary sort column in descending order, DeptId will be sorted first. Then,
within each DeptId, rows will be sorted based on Salary in reverse order (see Fig.
5-40).

REVISITING SUBSTITUTION VARIABLES

The substitution variables can be used in statements other than the INSERT state-
ment. They can substitute for column names, table names, expressions, or text. Their
use is to generalize queries by inserting them as follows:

� In the SELECT statement in place of a column name.
� In the FROM clause in place of a table name.
� In the WHERE clause as a column expression or text.
� As an entire SELECT statement.

If a variable is to be reused within a query without getting a prompt again
for the same variable, the double-ampersand (&&) substitution variable is used.
The user gets only one prompt for the variable with &&, and the value of the
variable is then used more than one time. In Fig. 5-41, the variable columnname is
used twice, once in the SELECT statement in the column list and then again as
the sort column in the ORDER BY clause. The user, however, gets only one
prompt for the variable.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 125

126 Chap. 5 Working with Tables: Data Management and Retrieval

DEFINE COMMAND

A variable can be defined at the prompt.The variable is assigned a value that
is held until the user exits from or undefines it. The general syntax is

DEFINE variable [= value]

For example,

DEFINE Last = Shaw

The variable last gets the value Shaw, which can be used as a substitution vari-
able in a query. For example,

SELECT * FROM employee WHERE Lname = ‘&Last’;

The DEFINE Last command will return the value of the variable if it already
has a value; otherwise, Oracle will display an “UNDEFINED” message.

The variable’s value can be erased with the UNDEFINE command. For example,

UNDEFINE last

The variable is valid during a session only. If you want to use a variable every
time you log in, it can be defined in your login script file (login.sql).

SQL * Plus
SQL7

SQL> SELECT Last, First, &&columnname
2 FROM student
3 ORDER BY &columnname;

Enter value for columnname: MajorId
old 1: SELECT Last, First, &&columnname
new 1: SELECT Last, First, MajorId
old 3: ORDER BY &columnname
new 3: ORDER BY MajorId

LAST FIRST MAJORID
- -
Diaz Jose 100
Khan Amir 200
Patel Rajesh 400
Tyler Mickey 500
Rickles Deborah 500
Lee Brian 600

6 rows selected.

SQL>

Figure 5-41 The && substitution variable.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 126

CASE Structure 127

Figure 5-42 shows use of DEFINE command to define variable Temp with a
value of 999.The DEFINE command then displays all defined variables for the session,
including the just-defined variable Temp. The variables are stored with data-type
CHAR.

CASE STRUCTURE

CASE structure is allowed anywhere expressions are allowed in SQL statements. SQL’s
CASE strcture is similar to the SELECT CASE statement in Visual Basic language
and the switch case statement in and Java.The general syntax of CASE is

CASE WHEN condition1 THEN
Expression1

WHEN condition2 THEN
Expression2

. . .
[ELSE Expression]

END

In Figure 5-43, CASE structure is illustrated with an UPDATE statement. The
Salary column is updated with different increments based on employees’ depart-
ment Id. Employees in Department 10 get a 10% raise, employees in Department 20
get a 5% raise, and others do not get any raise!

C+ +Á
Á

SQL> DEFINE Temp = 999
SQL> DEFINE
DEFINE _CONNECT_IDENTIFIER = “oracle” (CHAR)
DEFINE _SQLPLUS_RELEASE = “902000100” (CHAR)
DEFINE _EDITOR = “Notepad” (CHAR)
DEFINE _O_VERSION = “Oracle9i Enterprise Edition Release
9. 2 . 0 . 1 . 0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9 . 2 . 0 . 1 . 0 - Production” (CHAR)
DEFINE _O_RELEASE = “902000100” (CHAR)
DEFINE DEPT_ID = “80” (CHAR)
DEFINE LOCATION = “Monroe” (CHAR)
DEFINE DEPT_NAME = “Accounting” (CHAR)
DEFINE MANAGER = “NULL” (CHAR)
DEFINE COLUMNNAME = “MajorId” (CHAR)
DEFINE TEMP = “999” (CHAR)
SQL>

Figure 5-42 The DEFINE command.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 127

128 Chap. 5 Working with Tables: Data Management and Retrieval

IN A NUTSHELL . . .

� The Data Manipulation Language (DML) statements INSERT, UPDATE,
and DELETE are used for data maintenance.

� Date and character values are enclosed in single quotation marks. Oracle is
case sensitive about character values and format sensitive about date values.
The default date format is DD-MON-YY. Number values are not enclosed
in quotation marks.

� To use a character value with a single quotation mark, use the single quota-
tion mark twice in succession.

� Null values can be entered implicitly or explicitly.A null value is an unknown
and undefined value.

� A foreign key value in a child table is allowed only if the value exists in the
parent table’s primary key.

� A user can create interactive scripts by using substitution variables and the
ACCEPT command.

� The UPDATE statement is used to change existing data.
� Conditions use column, value, relational, logical, and other special operators.
� Every INSERT, DELETE, and UPDATE command is successful provided

the integrity constraints are not violated.
� A constraint can be dropped permanently or disabled temporarily using the

ALTER TABLE statement. The disabled constraint can be enabled later.
� The SELECT query is used to retrieve data from existing tables.
� The wild-card is used to display all columns with the SELECT query.
� The DISTINCT clause in front of a column name returns nonduplicate values

only.
� A column alias is used for more descriptive column headings because the

column names are abbreviated. By default, column names are displayed as
column headings in data retrieval.

*

SQL> UPDATE employee
2 SET Salary = CASE WHEN DeptId = 10 THEN
3 Salary * 1.10
4 WHEN DeptId = 20 THEN
5 Salary * 1.05
6 ELSE Salary
7 END
8 /

8 rows updated.

SQL>

Figure 5-43 UPDATE with CASE structure.

ShahCh05v3.qxd 4/16/04 11:53 AM Page 128

Chap. 5 Exercise Questions 129

� A column alias can also be used for expressions. A column alias is enclosed
in double quotation marks to preserve case or to use special characters.

� The concatenation characters join a column or a character string to an-
other column.

� The arithmetic operations are performed on number data types for data ma-
nipulation. Whatever is in parentheses is performed first. Operators and /
have higher precedence

� Use of a null value in an arithmetic expression returns a null result.
� The logical operators AND and OR are used to evaluate multiple conditions.
� The special comparison operator LIKE is used when wild cards % and _ are

used for pattern matching.The wild-card % represents zero or more charac-
ters. The wild card _ represents one character only.

� The order of rows in a table is undefined. The rows can be displayed in a
sorted order with the ORDER BY clause in the SELECT statement. The
default sort order is ascending.The DESC keyword is used for sorting in de-
scending order.

� The && substitution variable is used to reuse a variable’s value without get-
ting prompted again.

� The DEFINE and UNDEFINE commands are used at the
prompt to assign or erase a variable’s value.

� The CASE structure allows a user to perform different actions based on the
supplied conditions’ outcome. It is similar to Visual Basic’s SELECT
CASE and to C++ and Java’s switch case statements. CASE structure
can also be used with other SQL statements.

EXERCISE QUESTIONS

True/False:
1. In Oracle, character values are enclosed in single quotation marks, but date and number

values are not.
2. In Oracle9i, the default display format for date is DD-MM-YYYY.
3. A null value is not defined or not known.
4. The UPDATE statement without the WHERE clause can update all rows in the table.
5. A column alias is enclosed in double quotation marks to display a column name in up-

percase only.
6. The AND operator returns a TRUE result if one of the two conditions is true.
7. The substitution variable can be deleted with UNDEFINE command.
8. The WHERE clause restricts individual rows, but it does not filter columns.
9. There is no restriction in deleting a row from a parent table.

10. The DELETE statement without a WHERE clause has the same effect as TRUNCATE.

Á
Á

SQL * Plus

than + and - operators.
*

1 72

ShahCh05v3.qxd 4/16/04 11:53 AM Page 129

130 Chap. 5 Working with Tables: Data Management and Retrieval

11. A null value may be inserted into a column by using NULL or ‘’ (two single quotes).
12. The SELECT statement can be used to modify data in a table.
13. A search condition with wild card may not use equal operator.
14. If the ORDER BY clause is used with the DESC option on a date column, the most cur-

rent date is displayed first.
15. If the ORDER BY clause is used with the default sort order on a character column, the

column values are displayed in alphabetical order.

List Output/Message from the Following Queries/Statements (Use Tables Created in the
Chapter 4 Lab Activity):
1. SELECT First Last “Name”, BirthDate FROM student;
2. SELECT DISTINCT (MajorId) FROM student;
3. SELECT FROM location ORDER BY Building, Capacity DESC;
4. SELECT Lname, Fname, (Salary / 12) MONTHLYSALARY FROM employee ORDER

BY MONTHLYSALARY;
5. DELETE FROM faculty WHERE

Indicate Which of the Following Queries/Statements Will Result in an Error Message and
Why (Use Tables Created in the Chapter 4 Lab Activity):
1. SELECT LastName, FirstName FROM student;
2. SELECT DeptId, FROM dept;
3. INSERT INTO dept VALUES (77, RESEARCH, NULL, NULL);
4. UPDATE employee

5. DELETE FROM dept

LAB ACTIVITY

Write Queries/Statements for the Following (Use Tables Created in Chapter 4 Lab Activity):
1. Display all employee names (last name and first name separated by a comma and a

space) and salary with appropriate column aliases.
2. Display all employees who do not get any commission.
3. Display unique building names from the LOCATION table.
4. Display all course sections offered in Winter 2003.
5. Display names of faculty members who work in Department 1 or 2. Use the IN operator

in your query.
6. Find all New York and New Jersey students.
7. Give a 10% raise to employee number 111.
8. Delete Department 30 from the department table. If this is not successful, write down

your suggestion to make it work.
9. For each CourseId, display the maximum count in descending order.

10. Insert a new term in the TERM table.

WHERE DeptId = 10;
WHERE EmployeeId = 111;
SET DeptId = 88

*

DeptId = 2;

*

7 ‘ ‘ 7

1=2

ShahCh05v3.qxd 4/16/04 11:53 AM Page 130

Chap. 5 Lab Activity 131

11. Create a custom prompt for the user to input any value between 50 and 99 into the
DeptId column.

12. Find courses with no required prerequisite.
13. Display faculty names in descending order by their department but in alphabetical order

by their name within each department.
14. Find faculty members whose name start with the letter C.
15. Find students who started in the year 2003. Use the start term column and wild card.
16. Write the command to display a character column in 30 columns and a

numeric column with 9,999.99 format.
SQL * Plus

ShahCh05v3.qxd 4/16/04 11:53 AM Page 131

6

Working with Tables:

Functions and Grouping

IN THIS CHAPTER . . .

� Data retrieval statements are written using single-row functions.
� Numeric, character, conversion, and miscellaneous functions are introduced

and used.
� Data are manipulated using aggregate or group functions.
� Various clauses are used with data retrieval queries for filtering and grouping

of data.

BUILT-IN FUNCTIONS

The built-in functions provide a powerful tool for the enhancement of a basic query.
A function takes zero or more arguments and returns a single value. Just like other
software and programming languages, the functions covered in this section are specific
to Oracle. Functions are used for performing calculations on data, converting data,
modifying individual data, manipulating a group of rows, and formatting columns. In
Oracle’s SQL, there are two types of functions:

1. Single-row functions, which work on columns from each row and return
one result per row.

2. Group functions or aggregate functions, which manipulate data in a group
of rows and return single result.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 132

Built-In Functions 133

Single-Row Functions

The single-row functions take different types of arguments, work on a data item from
each row, and return one value for each row.The arguments are in the form of a con-
stant value, variable name, column, and/or expression. The value returned by a func-
tion may be of a different type than the argument(s) supplied. The general syntax is

Function(column | expression [, argument1, argument2, . . .])

where function is the name of the function, column is a column from a table,
expression is a character string or a mathematical expression, and argument is any
argument used by the function.

There are various types of single-row functions:

� Character functions take a character string or character-type column as an
argument and return a character or numeric value.

� Number functions take a number or number-type column as an argument
and return a numeric value.

� Date functions take a date value or date-type column as an argument and
return date-type data. (Exception: The MONTHS_BETWEEN function re-
turns a numeric value.)

� Conversion functions convert value from one data type to another.
� General functions perform different tasks.

Character Functions. The character functions perform case conversion
or character manipulation. Figure 6-1 has a list of character functions and their use.
The case-conversion character functions change a string or character-type column
data’s case. For example,

UPPER(‘Oracle’) ‘ORACLE’
LOWER(‘DaTaBaSe SyStEmS’) ‘database systems’
INITCAP(‘DaTaBaSe SyStEmS’) ‘Database Systems’

For example, Figure 6-2 shows the use of character functions UPPER, LOWER,
and INITCAP in the SELECT clause to display columns with different cases.

Often, more than one data-entry person will populate a table. One person en-
ters names in all uppercase, and the other uses proper case. This could become a
nightmare for data retrieval query writers if not for functions. Functions are very
useful in the WHERE clause’s conditions as well.

For example, in Figure 6-3, a query is issued with the condition
and it resulted in a “no row selected” message.The table does contain students

from New York state. The problem here is the case used in entering state values. The
same query is rewritten with condition and it re-
turned two student names.The use of the UPPER function converted the value in the

= ‘NY’,WHERE UPPER1State2

= ‘ny’,
WHERE State

:
:
:

ShahCh06v3.qxd 4/16/04 11:54 AM Page 133

134 Chap. 6 Working with Tables: Functions and Grouping

Character Function Use

Converts each letter to uppercase.
Converts each letter to lowercase.
Converts character value to the proper case
(i.e., first character of each word is converted to
uppercase and the rest to lowercase).
Joins the first value to the second value. Similar to
the operator discussed earlier.
Returns a substring, starting at character position
x, and returns y number of characters.
Returns a substring, starting at character
position z and going to the end of string.
Returns the position of the supplied character.
Removes the leading supplied character.
Removes the trailing supplied character.
Removes the leading and trailing characters.

TRIM(column) Removes the leading and trailing spaces only.
Returns the number of characters.
Pads the value with ‘str’ to the left to a total width
of n.
Pads the value with ‘str’ to the right to a total width
of n.
Replaces substring c, if present in the column or
expression, with string r.

REPLACE1column � expr, c, r2

RPAD1column � expr, n, ‘str’2

LPAD1column � expr, n, ‘str’2
LENGTH1column � expr2

TRIM1‘c’ FROM column � expr2
RTRIM1column � expr, c2
LTRIM1column � expr, c2
INSTR1column � expr, c2

SUBSTR1column � expr, z2

SUBSTR1column � expr, x, y2

7

CONCAT1column � expr, column � expr2

INITCAP1column � expr2
LOWER1column � expr2
UPPER1column � expr2

Figure 6-1 Character functions.

SQL> SELECT UPPER(Lname), LOWER(Fname),
2 INITCAP(Fname || ’ ’ || Lname)
3 FROM employee;

UPPER(LNAME) LOWER(FNAME) INITCAP(FNAME||”||LNAME)
- -
SMITH john John Smith
HOUSTON larry Larry Houston
ROBERTS sandi Sandi Roberts
MCCALL alex Alex Mccall
DEV derek Derek Dev
SHAW jinku Jinku Shaw
GARNER stanley Stanley Garner
CHEN sunny Sunny Chen

8 rows selected.

SQL>

Figure 6-2 Character functions in SELECT.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 134

Built-In Functions 135

column to uppercase, and it was then compared to the value NY, which has same case.
The condition can be written as instead.

A character function is used in various SELECT clauses, including the
ORDER BY clause. The LENGTH function returns the length of a character col-
umn or string literal. Suppose we want to see names in ascending order by length of
names.The clause will use ORDER BY LENGTH(Last) instead of just ORDER BY
Last, as shown in Figure 6-4.

WHERE LOWER1State2 = ‘ny’

In Oracle9i, the LENGTH function is enhanced with other functions like
LENGTHB (to get length in bytes instead of characters) and LENGTHC (to get
length in unicode).

The character manipulation functions manipulate a character-type value to re-
turn another character- or numeric-type result. For example,

CONCAT(‘New’, ‘York’) ‘NewYork’
SUBSTR(‘HEATER’, 2, 3) ‘EAT’:

:

SQL> SELECT Last, First FROM student
2 WHERE State=’ny’;

no rows selected

SQL> SELECT Last, First FROM student
2 WHERE UPPER(State) = ‘NY’;

LAST FIRST
- -
Tyler Mickey
Lee Brian

SQL>

Figure 6-3 Character function in WHERE.

SQL> SELECT Last, First FROM student
2 ORDER BY LENGTH(Last);

LAST FIRST
- -
Lee Brian
Diaz Jose
Khan Amir
Tyler Mickey
Patel Rajesh
Rickles Deborah

6 rows selected.

SQL>

Figure 6-4 Character function in ORDER BY.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 135

136 Chap. 6 Working with Tables: Functions and Grouping

INSTR(‘abcdefg’, ‘d’) 4

LTRIM(‘00022345’, ‘0’) ‘22345’

RTRIM(‘0223455’, ‘5’) ‘02234’

TRIM(‘ ‘FROM’ Monroe’) ‘Monroe’

LENGTH(‘Oracle9i’) 8

LPAD(265000, 9, ‘$’) $$$265000

RPAD(265000, 9,)

REPLACE(‘Basketball’, ‘ket’, ‘e’) ‘Baseball’

In Oracle9i, the INSTR function is enhanced to take more arguments:

SELECT INSTR(‘CORPORATE FLOOR DOOR’, ‘OR’ 1, 2) FROM dual;

where we are looking for string ‘OR’ and function is asked to start at the first char-
acter from the left to look for the second occurrence of the string. The result is 5, as
the second ‘OR’ starts at position 5. If argument 1 is changed to the function will
start at the third character from right and search in the reverse direction.

Numeric Functions. The numeric functions take numeric value(s) and re-
turn a numeric value. The ROUND function rounds the value, expression, or col-
umn to n decimal places. If n is omitted, zero decimal place is assumed. If n is
negative, rounding takes place to the left side of the decimal place. For example,

ROUND(25.465, 2) = 25.47
ROUND(25.465, 0) = 25
ROUND(25.465, –1) = 30

The TRUNC function truncates the value, expression, or column to n decimal
places. If n is not supplied, zero decimal place is assumed. If n is negative, truncation
takes place to the left side of the decimal place. For example,

TRUNC(25.465, 2) = 25.46
TRUNC(25.465, 0) = 25
TRUNC(25.465, –1) = 20

The POWER function finds the power of a number For example,

POWER(2, 4) = 16
POWER(5, 3) = 125

The ABS function returns the absolute value of a column, expression, or value.
For example,

ABS(–10) = 10

1np2.

-3,

:
: 265000***‘*’

:
:
:
:
:
:

ShahCh06v3.qxd 4/16/04 11:54 AM Page 136

Built-In Functions 137

The MOD function finds the integer remainder of x divided by y. It ignores the
quotient. For example,

MOD(5, 2) = 1
MOD(3, 5) = 3
MOD(8, 4) = 0

The SIGN function returns for a negative number, 1 for a positive number,
and 0 for a zero. For example,

SIGN(-50) = –1
SIGN(+43) = 1

SIGN(0) = 0

The FLOOR function is similar to the TRUNC function, and the CEIL func-
tion is similar to the ROUND function. However, both take one argument instead
of two. For example,

FLOOR(54.7) = 54
CEIL(54.7) = 55

There is a difference in CEIL function, because it always returns the next higher in-
teger value. For example,

ROUND (54.3) = 54
CEIL (54.3) = 55

Figure 6-5 shows the use of numeric functions, and Figure 6-6 explains their
use. Did you notice the table name in Figure 6-5? The table is called DUAL, which
is provided by Oracle. The DUAL table is owned by user SYS, and it is available to
all users.The DUAL table is useful when you want to find the outcome of a function
and the argument is not taken from any table. The DUAL table can also be used
perform arithmetic expressions. For example,

SELECT 25000 * 0.25 FROM DUAL;

The DUAL table contains a single column called DUMMY and a single row with
value X (see Fig. 6-7).

Date Functions. We already know that Oracle stores dates internally with
day,month,year, century,hour,minute,and second information.The default date display
format is DD-MON-YY.There is a very useful date function called SYSDATE that does
not take any arguments. SYSDATE returns the system’s current date. For example,

SELECT SYSDATE
FROM DUAL;

-1

ShahCh06v3.qxd 4/16/04 11:54 AM Page 137

138 Chap. 6 Working with Tables: Functions and Grouping

Numeric Function Use

Rounds the column or expression to n decimal places.
Truncates the column or expression to n decimal places.

POWER(n, p) Returns n raised to power
ABS(n) Returns the absolute value of n.
MOD(x, y) Returns the integer remainder of x/y.
SIGN(value) Returns 1 for positive, for negative and 0 for a zero.
FLOOR(value) Returns the largest integer less than or equal to value.
CEIL(value) Returns the smallest integer greater than or equal to value.

-1

p1np2.
TRUNC1column � expr, [n]2
ROUND1column � expr, [n]2

SQL> SELECT ROUND(5.55, 1), TRUNC(5.5), SIGN(-5.5), MOD(5,2),
2 ABS(-5), POWER(3, 4), FLOOR(5.5), CEIL(5.5)
3 FROM DUAL;

ROUND(5.55,1) TRUNC(5.5) SIGN(-5.5) MOD(5,2) ABS(-5) POWER(3,4) FLOOR(5.5) CEIL(5.5)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5.6 5 –1 1 5 81 5 6

SQL>

Figure 6-5 Using numeric functions.

Figure 6-6 Numeric functions.

SQL> DESCRIBE DUAL

Name Null? Type
- -
DUMMY VARCHAR2(1)

SQL> SELECT * FROM dual;

D
-
X

SQL>

Figure 6-7 DUAL table.

This query will display the current date.You can get more information about day, date
and time by using a format mask with SYSDATE function. Try the following state-
ment, which will make more sense after format masks are explained in Fig. 6-15:

SELECT TO_CHAR(SYSDATE, ’DY, MONTH DD, YYYY HH:MI:SS P.M.’)
FROM DUAL;

ShahCh06v3.qxd 4/16/04 11:54 AM Page 138

Built-In Functions 139

Similarly, the DUAL table can be used to display the outcome of any character and
number functions or an arithmetic expression.

The date-type column is very important. You can derive a lot of information
from date columns by performing “date arithmetic.” As you see in Figure 6-8, you
can add or subtract a number of days to or from a date to get a new resulting date.
You can also add a number of hours to a date. If you have two dates, you can find the
gap in days between them.

SQL> SELECT Last, First, (SYSDATE – BirthDate) / 365 AGE
2 FROM student;

LAST FIRST AGE
- -
Diaz Jose 20.8289038
Tyler Mickey 19.7330134
Patel Rajesh 17.9960271
Rickles Deborah 33.1521915
Lee Brian 18.0343832
Khan Amir 19.4289038

6 rows selected.

SQL>

Figure 6-9 Age calculation from birth date.

Date Expression Result

Adds a number of days to a date.
Substracts a number of days from a date.
Adds a number of hours to a date.
Gives the number of days between two
dates.

Date1 � Date2
Date � number/24
Date � number
Date � number

Figure 6-8 Date arithmetic.

In Figure 6-9, we have an expression that finds the
difference in days. Then, we divide the number of days by 365 to convert it to years.

1SYSDATE - BirthDate2

To take leap years into consideration, we can divide by 365.25 days instead of by
365. The resulting age has a decimal value.

You can truncate (with the TRUNC function) the result to zero decimal places,
and the age will be a whole number. The modified expression will look like this:

TRUNC((SYSDATE – BirthDate) / 365.25)

ShahCh06v3.qxd 4/16/04 11:54 AM Page 139

140 Chap. 6 Working with Tables: Functions and Grouping

Similarly, we can find the number of months or number of weeks by dividing
days by 30 or 7, respectively.

The common date functions and their use are given in Figure 6-10. The func-
tion MONTHS_BETWEEN returns a number. If date1 is later than date2, the result
is positive; otherwise, the result is negative. The decimal part in the result is because
of the portion of the month or extra days of the month. It is useful in finding the
delay between delivery date and payment date. For example,

MONTHS_BETWEEN(‘02-DEC-03’, ‘04-APR-03’) → 7.93548387

The function ADD_MONTHS adds the number of months supplied as a second
argument. The number must be an integer value. It can be positive or negative. For
example, if an item is shipped today and payment is due in three months, what is the
payment date?

ADD_MONTHS(‘10-MAY-03’, 3) → ‘10-AUG-03’

The function NEXT_DAY returns the next occurrence of a day of the week
following the date supplied. The second argument could be a number in quotes or a
day of the week. For example,

NEXT_DAY (‘14-OCT-03’, ‘SUNDAY’) → ‘19-OCT-03’
NEXT_DAY(‘14-OCT-03’, ‘TUESDAY’) ‘21-OCT-03’

The function LAST_DAY finds the last date of the month for the date sup-
plied as an argument. If something is due by the end of this month, what is that
date? For example,

LAST_DAY(‘05-FEB-04’) → ’29-FEB-04’

Date Function Use

MONTHS_BETWEEN(date1, date2) Finds the number of months between two dates.
ADD_MONTHS(date, m) Adds calendar months to a date.
NEXT_DAY (date, ‘day’) Finds the next occurrence of a day from the given

date.
LAST_DAY(date) Returns the last day of the month.
ROUND(date [, ‘format’]) Rounds the date to the nearest day, month, or

year.
TRUNC(date [, ‘format’]) Truncates the date to the nearest day, month, or

year.
Extracts the year, month, or day from a date
value.

NEXT_TIME(date, existing timezone, newtimezone) Returns the date in different time zone, such as
EST or PST.

EXTRACT1YEAR � MONTH � DAY FROM date2

Figure 6-10 Date functions.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 140

Built-In Functions 141

The ROUND function rounds a date based on the format specified. If a for-
mat is missing, rounding is to the nearest day. For example,

ROUND(TO_DATE(‘07/20/03’, ‘MM/DD/YY’), ‘MONTH’) → ‘01-AUG-03’

Here, the date is nearer to August 1 than to July 1. In the next example, the
date is nearest to the first of next year:

ROUND(TO_DATE(‘07/20/03’, ‘MM/DD/YY’), ‘YEAR’) → ‘01-JAN-04’

The TRUNC function truncates the date to the nearest format specified. Trun-
cation to the nearest month returns the first day of the date’s month, and truncation
to the nearest year returns the January 1 of the date’s year. For example,

TRUNC(TO_DATE(‘07/20/03’, ‘MM/DD/YY’), ‘MONTH’) → ‘01-JUL-03’
TRUNC(TO_DATE(‘07/20/03’, ‘MM/DD/YY’), ‘YEAR’) → ‘01-JAN-03’

The EXTRACT function extracts year, month, or day from a date value.For
example,

SELECT EXTRACT(MONTH FROM sysdate),
EXTRACT(DAY FROM sysdate),

EXTRACT(YEAR FROM sysdate) FROM dual;

The following is a list of a few more date- and time-related functions intro-
duced in Oracle9i:

CURRENT_DATE—returns the current date the in session’s time zone.
CURRENT_TIMESTAMP—returns the current date and time in the ses-
sion’s time zone.
DBTIMEZONE—returns the value of the database’s time zone.
SESSIONTIMEZONE—returns the current session’s time zone.
SYSTIMESTAMP—returns the date and time in the time zone of the database.

Other Functions. The NVL function converts a null value to an actual
value supplied as an argument. The second argument is enclosed within the single
quotation marks for columns with DATE, CHAR, or VARCHAR2 data types. The
general syntax is

NVL (column, value)

If the value in a column is null, convert it to a specified value. For example,

NVL(Commission, 0)
NVL(HireDate, ‘01-JAN-03’)
NVL(PreReq, ‘None’)

ShahCh06v3.qxd 4/16/04 11:54 AM Page 141

142 Chap. 6 Working with Tables: Functions and Grouping

If the commission amount is null, convert it to zero. If HireDate is not entered,
use ‘01-JAN-03’ for it. If prerequisite is null, use ‘None’.

Now, we will revisit our query in Fig. 5-18, where we tried to add Salary and
Commission columns. The total was blank for employees without a value in the
Commission column. Remember, any number plus a null value is equal to null. Let
us rewrite the same query using the NVL function (see Fig. 6-11).

SQL> SELECT Lname, Fname,
2 Salary + NVL(Commission, 0) “Total Salary”
3 FROM employee;

LNAME FNAME Total Salary
- -
Smith John 300000
Houston Larry 160000
Roberts Sandi 75000
McCall Alex 66500
Dev Derek 100000
Shaw Jinku 27500
Garner Stanley 50000
Chen Sunny 35000

8 rows selected.

SQL>

Figure 6-11 Arithmetic with the NVL function.

An extension of the NVL function is the NVL2 function. It takes three param-
eters instead of the two parameters used by NVL function. The NVL2 function
checks for null as well as not null values. If the column has a not null value, the sec-
ond parameter is displayed. If the column has a null value, the third parameter is dis-
played. The general syntax is

NVL2(column, notnullvalue, nullvalue)

For example,

NVL2(PreReq, ‘YES’, ‘NO’)

If prerequisite has a not null value,YES is displayed. If prerequisite is null, NO
is displayed.

Another similar function is COALESCE. It is also an extension to the NVL
function. The NVL function specifies a single alternative for a null value, whereas
the COALESCE function provides multiple alternatives. The general syntax is

COALESCE(column, alternative1, alternative2, . . .)

ShahCh06v3.qxd 4/16/04 11:54 AM Page 142

Built-In Functions 143

For example,

COALESCE(Commission, Salary, -1)

In other words, if the commission value is not null, then display it. If commission value
is null, then display salary value. If salary value is null, then display

The NULLIF function generates null values. First, it compares two expressions.
Then, if their values are equal, it generates a null, or it returns the first expression.
The general syntax is

NULLIF(exp1, exp2)

For example,

NULLIF(Supervisor, 111)

If Supervisor is equal to 111, then a null is displayed; otherwise, the supervisor’s value
is displayed.

The DECODE function is a conditional statement type of function. If you are fa-
miliar with any programming language like Visual Basic 6 (If ElseIf or Select
Case structures) or C (if else if or switch case structures), you will understand
the function with ease. The DECODE function tests a column or expression and for
each of its matching value, provides an action.The general syntax is

DECODE(column | expr, value1, action1,
[value2, action2, . . . ,]
[, default]);

The default action is provided for any value that does not match the values
checked within the function. If the default value is not used, a null value is returned
for nonmatching values. For example, we are displaying new salary for all employees
based on their PositionId. PositionId 1 gets a 20% raise, 2 gets 15%, 3 gets 10%, 4
gets 5%, and others get no increment at all. If the last default salary is not included
in the statement, the new salary for employees with PositionId 5 is displayed as null.

SELECT Lname, Salary,
DECODE(PositionId, 1, Salary * 1.2,

2, Salary * 1.15,
3, Salary * 1.1,
4, Salary * 1.05,

Salary) “New Salary”
FROM employee;

The CASE structure is an easier alternative to the DECODE function. It also
uses a conditional expression, with the key words WHEN and THEN. A CASE struc-
ture ends with the key word END. The CASE structure can be used in the SELECT,

ÁÁ
ÁÁ

-1.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 143

144 Chap. 6 Working with Tables: Functions and Grouping

FROM, WHERE, or ORDER BY clause. Let us rewrite the DECODE function
(given above) with CASE structure:

SELECT Lname, Salary,
CASE WHEN PositionId = 1 THEN Salary*1.2

WHEN PositionId = 2 THEN Salary*1.15
WHEN PositionId = 3 THEN Salary*1.1
WHEN PositionId = 4 THEN Salary*1.05
ELSE Salary

END “New Salary”
FROM employee;

Conversion Functions. The conversion functions convert data from one
data type to another. The Oracle server follows some rules to convert data type im-
plicitly. For example, if you enter a character string that includes a valid number, the
Oracle server can successfully convert CHAR data to NUMBER data. If you enter
a date as a string and use the default date format DD-MON-YY, the Oracle server
can perform CHAR-to-DATE conversion successfully. It is advisable to use explicit
data conversion functions for successful and reliable queries. The three conversion
functions shown in Fig. 6-12 are used for explicit data-type conversion in queries.

The TO_CHAR function converts a number or date value to its character
equivalent. The format argument is enclosed in single quotation marks, and the for-
mat value is case sensitive. Figures 6-13 to 6-16 describe common formats for number
and date with examples. In Figure 6-16, fill mode (fm) is used to remove unnecessary
spaces or zeroes in the front or in the middle.

Conversion Function Use

Converts a number or a date to a VARCHAR2 value
based on the format provided.

TO_NUMBER(char [, format]) Converts a character value with valid digits to a
number using the format provided.

TO_DATE(char [, format]) Converts a character value to date value based on the
format provided. Default format is DD-MON-YY.

TO_CHAR1number � date [, format]2

Figure 6-12 Conversion functions.

Number Format Meaning

9 Number of 9s to determine length (e.g., 99999).
0 Displays leading zeroes (e.g., 099999).
$ Displays floating dollar sign (e.g., $99999).
. Displays decimal point in specified location (e.g., 99999.99).
, Displays comma in specified location (e.g., 99,999).
PR Puts negative numbers in parenthesis (e.g., 99999PR).

Figure 6-13 Number formats.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 144

Built-In Functions 145

SQL> SELECT Lname, Fname, TO_CHAR(Salary, ’$999,999’) SALARY
2 FROM employee;

LNAME FNAME SALARY
- -
Smith John $265,000
Houston Larry $150,000
Roberts Sandi $75,000
McCall Alex $66,500
Dev Derek $80,000
Shaw Jinku $24,500
Garner Stanley $45,000
Chen Sunny $35,000

8 rows selected.

SQL>

Figure 6-14 TO_CHAR with number format.

Date/Time Format Meaning

YYYY Four-digit year
Y, YY, or YYY Last one, two, or three digits of the year
YEAR Year spelled out
Q Quarter of the year
MM Two-digit month
MON First three letters of the month
MONTH Month name using nine characters; left characters padded with spaces
Month Same as MONTH, but in InitCap format
RR Two-digit year based on century (previous century for years 50 to 99 and

current century for years 00 to 49)
RM Month in Roman numerals
WW or W Week number of year or month
DDD, DD, or D Day of year, month, or week
DAY Name of day using nine characters; left characters padded with blanks
DY Three-letter abbreviated name of day
DDTH Ordinal number (e.g., seventh)
DDSP Spelled-out number
DDSPTH Spelled-out ordinal number
HH, HH12, or HH24 Hour of day, or hour (0–12), or hour (0–23)
MI Minute (0–59)
SS Second (0–59)
SSSSS Seconds from midnight (0–86399)
“of” String in quotes displayed in the result
fm Fill mode used with other format mask (e.g., DAY) to suppress blanks

Figure 6-15 Date/time formats.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 145

146 Chap. 6 Working with Tables: Functions and Grouping

SQL> SELECT Last, First,
2 TO_CHAR (BirthDate, ’fmMonth DD, YYYY’) DOB
3 FROM student
4 /

LAST FIRST DOB
- -
Diaz Jose February 12, 1983
Tyler Mickey March 18, 1984
Patel Rajesh December 12, 1985
Rickles Deborah October 20, 1970
Lee Brian November 28, 1985
Khan Amir July 7, 1984

6 rows selected.

SQL>

Figure 6-16 TO_CHAR with date format (fill mode).

As we have been saying, the default date format is set to DD-MON-YY in most
Oracle installations. In Oracle-9i, DD-MON-YYYY also works as a default. If you
enter a birth date as 15-APR-60, it will be stored with year as 2060. That will create
undesired result. If the default format is DD-MON-RR, years 50 to 99 are interpreted
as 1950 to 1999 and years 00 to 49 as 2000 to 2049. If you are not sure about your ses-
sion settings, use a four-digit year with INSERT as well as other SQL statements. In
Figure 6-17, the character date values are converted to date type with the TO_DATE
function and format mask DD-MON-RR. Then, it is changed back to character for-
mat with the TO_CHAR function and format mask YYYY.

SQL> SELECT TO_CHAR(TO_DATE(’15-APR-60’, ’DD-MON-RR’), ’YYYY’) “19TH”,
2 TO_CHAR(TO_DATE(’15-APR-03’, ’DD-MON-RR’), ’YYYY’) “20TH”
3 FROM DUAL;

19TH 20TH
- - - - - - - -
1960 2003

SQL>

Figure 6-17 TO_CHAR with RR date format.

Nested Functions. Single-row functions can be nested within each other. In
nested functions, the innermost function is evaluated first, and then evaluation moves
outward.The outermost function is evaluated last.There is no limit on layers of nesting
for single-row functions. Evaluate the expression in Figure 6-18. First, the TO_DATE
function is applied to the character date string, then the TRUNC function truncates it

ShahCh06v3.qxd 4/16/04 11:54 AM Page 146

Built-In Functions 147

SQL> SELECT NEXT_DAY(ADD_MONTHS(TRUNC
2 (TO_DATE(’01/13/03’, ’MM/DD/YY’), ’MONTH’), 3), ’TUESDAY’) +7
3 AS “TAX DAY OR BIRTHDAY”
4 FROM DUAL;

TAX DAY O
- - - - - - - - -
15-APR-03

SQL>

Figure 6-18 Nested single-row functions.

to nearest month next, the ADD_MONTHS function adds three months to it, the
NEXT_DAY function finds the date on next Tuesday, and finally, seven is added to it.
The result is the tax day, which happens to be my birthday also. (People get gifts on
their birthday, but I always have to send a gift to Uncle Sam on mine!)

Group Functions

The group functions perform an operation on a group of rows and return one result.
Look at the EMPLOYEE and STUDENT tables:

� Who makes the lowest salary?
� Who got the maximum commission?
� What is the company’s total payroll?
� How many students started in the Winter 2003 semester?

It is easy to look through small tables and find answers. In a real-life situation,
however, most tables have thousands or even millions of records. It is efficient to
look through them with simple queries and group functions.

While using the functions described in Figure 6-19, the key words DISTINCT
or ALL can be used before listing the argument in parenthesis. The key word ALL,

Group Function Use

SUM (column) Finds the sum of all values in a column; ignores null values.
AVG (column) Finds the average of all values in a column; ignores null

values.
Finds the maximum value; ignores null values.
Finds the minimum value; ignores null values.
Counts the number of rows, including nulls, for counts
nonnull values if the column or expression is used as an
argument.

;COUNT1 ƒ column ƒ expression2
MIN1column ƒ expression2
MAX1column ƒ expression2

Figure 6-19 Group functions.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 147

148 Chap. 6 Working with Tables: Functions and Grouping

which means use all values (including duplicate values), is the default.The key word
DISTINCT tells the function to use nonduplicate values only.

Let us write a query to find the total, average, highest, and lowest salaries from
the EMPLOYEE table. Figure 6-20 shows the use of group functions on a number
column, Salary.

Now, we will try the MAX and MIN functions on a date field. Which student
from the STUDENT table was born first, and which was born last? Check out
Figure 6-21. The MAX of a date returns the latest date, and the MIN of a date re-
turns the earliest date. If you use the function on a character column, MAX will re-
turn the last name alphabetically, and MIN will return the first name alphabetically.

SQL> SELECT SUM(Salary), AVG(Salary), MAX(Salary), MIN(Salary)
2 FROM EMPLOYEE;

SUM(SALARY) AVG(SALARY) MAX(SALARY) MIN(SALARY)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

741000 92625 265000 24500

1 row selected.

SQL>

Figure 6-20 Group functions.

SQL> SELECT MAX(BirthDate) YOUNGEST,
2 MIN(BirthDate) OLDEST
3 FROM student;

YOUNGEST OLDEST
- - - - - - - - - - - - - - - - - -

12-DEC-85 20-OCT-70

SQL>

Figure 6-21 Group function on a date column.

In Figures 6-22 and 6-23, uses of the COUNT function on an entire row and a
column are given. In Figure 6-22, when rows are counted in the EMPLOYEE table,
all eight employees’ rows are counted. In Figure 6-23, when EmployeeId column val-
ues are counted, it returns eight employees. When Commission column values are
counted, the null values are ignored, giving us only five commissioned employees.

We can change that using the NVL function:

COUNT(NVL(Commission,0))

ShahCh06v3.qxd 4/16/04 11:54 AM Page 148

Grouping Data 149

Null values in Commission columns are replaced with 0 in the query, and the value 8
is returned from the query.

Question: Which of the following queries will return a higher average from
the Commission column?

SELECT AVG(Commission) FROM EMPLOYEE;
SELECT AVG(NVL (Commission, 0)) FROM EMPLOYEE;

Answer: The first query, because it adds five commission values and divides the total
by five, whereas the second query divides the total by eight. The output
would be 14600 from the first query but 9125 from the second query.

GROUPING DATA

The rows in a table can be divided into different groups to treat each group sepa-
rately. The group functions can be applied to individual groups in the same fashion
they are applied to all rows. The GROUP BY clause is used for grouping data. The
general syntax is

SELECT column, groupfunction(column)
FROM tablename
[WHERE condition(s)]
[GROUP BY column | expression]
[ORDER BY column | expression [ASC | DESC]];

SQL> SELECT COUNT(*)
2 FROM employee;

COUNT(*)
- - - - - - - - - -

8

SQL>

Figure 6-22 COUNT all rows.

SQL> SELECT COUNT(EmployeeId), COUNT(Commission)
2 FROM employee;

COUNT(EMPLOYEEID) COUNT(COMMISSION)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

8 5

SQL>

Figure 6-23 COUNT columns with and without null values.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 149

150 Chap. 6 Working with Tables: Functions and Grouping

Important points to remember include:

� When you include a group function and the GROUP BY clause in your
query, the individual column(s) appearing in SELECT must also appear in
GROUP BY.

� The WHERE clause can still be used to restrict data before grouping.
� The WHERE clause cannot be used to restrict groups.
� A column alias cannot be used in a GROUP BY clause.
� The GROUP BY column does not have to appear in a SELECT query.
� When a column is used in the GROUP BY clause, the result is sorted in as-

cending order by that column by default. In other words, GROUP BY has
an implied ORDER BY. You can still use an ORDER BY clause explicitly
to change the implied sort order.

� In Oracle9i, the order of the WHERE and GROUP BY clauses in the SELECT
query does not matter, but traditionally, the WHERE clause is written before
the GROUP BY clause.

In the next few figures, you will see the effect of a GROUP BY clause on queries
with group functions.

As you see in Figure 6-24, the DeptId column is automatically sorted, because it
is used in the GROUP BY clause.The DeptId column is not necessary in the SELECT
clause, but it is a good idea to include it so the counts make sense.

What will happen if the query in Figure 6-24 is typed without a GROUP BY
clause? If the SELECT clause contains only a group function, it does not matter.
The query in the figure, in fact, has the SELECT clause with a column and a group
function. When a column appears in the SELECT clause along with the group func-
tion, the column must appear in the GROUP BY clause. Failure to do so results in
error ORA-00937 (see Fig. 6-25).

SQL> SELECT DeptId, COUNT(*) “# of Emp”
2 FROM employee
3 GROUP BY DeptId
4 /

DEPTID # of Emp
- - - - - - - - - - - - - -

10 3
20 2
30 2
40 1

SQL>

Figure 6-24 COUNT rows by group.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 150

Grouping Data 151

Can we use a condition in the WHERE clause that contains a group function?
The WHERE clause can be used to restrict rows, but it cannot be used to restrict
groups, as you see in Figure 6-26. In this figure, we are trying to see buildings that
have four or more rooms.The error ORA-00934 states that the group function is not
allowed in the WHERE clause. We can fix this problem with a new, HAVING
clause, which is used for restricting groups, as you will see shortly.

SQL> SELECT DeptId, COUNT(*) “# of Emp”
2 FROM employee
3 /

SELECT DeptId, COUNT(*) “# of Emp”
*

ERROR at line 1:
ORA-00937: not a single-group group function

SQL>

Figure 6-25 Missing GROUP BY clause.

SQL> SELECT Building, COUNT(*)
2 FROM location
3 WHERE COUNT(*) >= 4
4 GROUP BY Building;

WHERE COUNT(*) >= 4
*

ERROR at line 3:
ORA-00934: group function is not allowed here

SQL>

Figure 6-26 Invalid WHERE clause.

HAVING Clause

The HAVING clause can restrict groups. The WHERE clause restricts rows, the
GROUP BY clause groups remaining rows, the Group function works on each
group, and the HAVING clause keeps the groups that match the group condition.

In the sample query (see Fig. 6-27), the WHERE clause filters out the building
named Kennedy, the rest of the rows are grouped by the building names Gandhi and
Nehru, the group function COUNT counts the number of rows in each group, and
the HAVING clause keeps groups with four or more rows—that is, the Gandhi
building with five rows/rooms.

The implied ascending sort with the GROUP BY clause can be overriden by
adding an explicit ORDER BY clause to the query. Figure 6-28 shows outcome sorted
in ascending order by Building column with the GROUP BY clause, then it is re-
versed to descending order by inserting the ORDER BY clause in line 5.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 151

152 Chap. 6 Working with Tables: Functions and Grouping

Let us look at another example of GROUP BY and HAVING. Let us find em-
ployees who have more than two dependents. We will use the DEPENDENT table
and GROUP BY EmployeeId column, find COUNT of DependentId, and also
check for COUNT higher than 2:

SELECT EmployeeId, COUNT(DependentId)
FROM dependent
GROUP BY EmployeeId
HAVING COUNT(DependentId) > 2;

SQL> SELECT Building, COUNT(*) ROOMS
2 FROM location
3 WHERE UPPER(Building) <> ’KENNEDY’
4 GROUP BY Building
5 HAVING COUNT(*) >= 4;

BUILDIN ROOMS
- - - - - - - - - - - - -
Gandhi 5

1 row selected.

SQL>

Figure 6-27 HAVING clause.

SQL> SELECT Building, COUNT(*)
2 FROM location
3 GROUP BY Building
4 HAVING COUNT(*) > 2;

BUILDIN COUNT(*)
- - - - - - - - - - - - - - -
Gandhi 5
Kennedy 4

SQL> i
5 ORDER BY Building DESC;

BUILDIN COUNT(*)
- - - - - - - - - - - - - - -
Kennedy 4
Gandhi 5

SQL>

Figure 6-28 GROUP BY sort order changed with ORDER BY.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 152

Chap. 6 Exercise Questions 153

Nesting Group Functions

The single-row functions can be nested to many levels, but the group functions can
only be nested to two levels. For example,

SELECT SUM(MaxCount) FROM crssection GROUP BY CourseId;

will find the total available seats for each CourseId. If you use this output for an
outer function in a nested scenario as follows, you will get a different answer:

SELECT MAX(SUM(MaxCount)) FROM crssection GROUP BY CourseId;

The answer returned by this query is 85, because the outer query takes totals by
each CourseId and finds the one with the largest value.

IN A NUTSHELL . . .

� Single-row functions work on each row individually. They include character
functions, number functions, date functions, data conversion functions, and
other general functions. All functions take zero or more arguments and re-
turn one value back.

� The NVL function converts a null value to another specified value that is
provided as its second argument.

� The DECODE function is similar to the if else if or case structures in
programming languages.

� In an expression with nested single-row functions, the innermost function is
performed first, and the outermost function is performed last.

� The SYSDATE function is an Oracle function that returns the current date
from the system. SYSDATE is very useful in date arithmetic.

� The group functions work on a group of rows to return one result per group.
The rows can be grouped together by using the GROUP BY clause with a
SELECT query.

� The WHERE clause is used to restrict rows; similarly, the HAVING clause is
used to restrict groups.

� The group functions can be nested like single-row functions. The nesting is
limited to two functions for group functions.

EXERCISE QUESTIONS

True/False:
1. A single-row function may be used in the SELECT clause, but it is not allowed in the

WHERE clause.
2. The SYSDATE function can return the current date but not the current time.

Á

ShahCh06v3.qxd 4/16/04 11:54 AM Page 153

154 Chap. 6 Working with Tables: Functions and Grouping

3. Single-row functions can be nested to two levels only.
4. The MAX function on a date column will return the latest date.
5. The TO_CHAR function converts date and numeric values to VARCHAR2.
6. The AND operator returns a TRUE result if one of the two conditions is true.
7. There is no limit in nesting group functions to multiple levels.
8. The WHERE clause restricts individual rows, but the HAVING clause restricts groups.
9. The ORDER BY clause can be used in a query with the GROUP BY clause to override

the implied sort order.
10. Null values in a column are not counted by the COUNT function.

List Output from the Following Queries (Use Tables Created in the Chapter 4 Lab Activity):
1. SELECT INITCAP(First) || ‘ ’ || INITCAP(Last) “Student Name”

FROM student;

2. SELECT COUNT(DISTINCT(MajorId)) FROM student;

3. SELECT Building, SUM(Capacity) TOTCAP
FROM location
GROUP BY Building
ORDER BY TOTCAP DESC;

4. SELECT UPPER(Lname), UPPER(Fname), (SYSDATE – HIREDATE) DAYS
FROM employee
ORDER BY DAYS;

5. SELECT Building, AVG(Capacity)
FROM location
GROUP BY Building
HAVING AVG(Capacity) > 25;

State Which of the Following Queries Will Result in an Error Message and Why (Use Tables
Created in the Chapter 4 Lab Activity):

1. SELECT UPPER(FirstName || ‘ ‘ || LastName) FROM student;

2. SELECT DeptId, COUNT (*) FROM employee;

3. INSERT INTO DEPT VALUES(90, RESEARCH, NULL, NULL);

4. SELECT DeptId, SUM(Salary)
FROM employee
WHERE SUM(Salary) > 200000
GROUP BY DeptId;

5. SELECT SUM(EmployeeId)
FROM employee;

LAB ACTIVITY

Write Queries for the Following (Use Tables Created in Chapter 4 Lab Activity):
1. Display all employee names (last name and first name separated by a comma and a space)

with proper case and salary with currency format.
2. Display all employees with their commission value. Display zero commission for employees

who do not get any commission.

ShahCh06v3.qxd 4/16/04 11:54 AM Page 154

Chap. 6 Lab Activity 155

3. Count the total number of rooms in LOCATION.
4. Count the distinct building names in LOCATION.
5. Display all student names and birth dates (display birth dates with the format 20 OCTO-

BER, 1970).
6. Find the average, highest, and lowest age for employees.
7. Display the total number of dependents for each employee for employees who have at

least two dependents.
8. Display only the year value from each employee’s hire date.
9. Find average employee commission.

(a) Ignore nulls.
(b) Do not ignore nulls.

10. Find sum of maximum count by term by course (GROUP BY two columns).
11. Find 2 to the power of 10.
12. Display courses and prerequisites. If there is no prerequisite, display “none” or else

display “one.”
13. Count number of faculty members by each department.
14. Display average employee salary by department, but do no include departments with an

average salary of less than $75,000.
15. Find the number of years employees have been working. Display the integer part of the

value only.
16. Find students who are born in the month of May.
17. Display employee’s last name and first name, followed by if the

commission is not null or else display salary only.
18. Display each employee’s full name followed by a message based on salary. If the salary

is above $100,000, display “HIGH.” If the salary is between $50,000 and $100,000, display
“MEDIUM.” If the salary is below $50,000, display “LOW.”

salary + commission

ShahCh06v3.qxd 4/16/04 11:54 AM Page 155

7

Multiple Tables: Joins

and Set Operations

IN THIS CHAPTER . . .

� You will learn to design queries based on multiple tables.
� You will retrieve related data from various tables in a database.
� Various types of table joins are discussed.
� Set operations UNION, UNION ALL, INTERSECT and MINUS are used.

In Chapter 5, learned data retrieval techniques to obtain data from a single table
with the SELECT query. In Chapter 6, learned the use of various clauses and func-
tions used in SELECT statements. In this chapter, we will expand on what you have
learned in the previous chapters. Here, you will learn to create queries in which data
are retrieved from more than one table or with more than one query. For example, a
student’s demographic information is in the STUDENT table, and his or her faculty
advisor’s information is in the FACULTY table. An employee’s name is in the EM-
PLOYEE table, but his or her department’s information is in the DEPT table, any
dependents are in the DEPENDENT table, and the salary grade is in the EM-
PLEVEL table. Sometimes, you can accomplish tasks by joining two or more ta-
bles—or by joining a table to itself.

ShahCh07v3.qxd 4/16/04 11:56 AM Page 156

Join 157

JOIN

When the required data are in more than one table, related tables are joined using a
join condition. The join condition combines a row in one table with a row in anoth-
er table based on the same values in the common columns. In most cases (but not al-
ways), the common columns are the primary key in one table and a foreign key in
another. In this section, you will be introduced to different types of joins based on
the join condition used.

Cartesian Product

A Cartesian product results from a multitable query that does not have a WHERE
clause. The product operation joins each row in the first table with each row in the
second table.The product normally results in an output with a large number of rows
and is not very useful.Whenever retrieving data from more than one table, you must
use one or more valid join conditions to avoid a Cartesian product! You would per-
form a Cartesian product operation only if you were looking to find all possible
combinations of rows from two tables.

In Figure 7-1, you will see an example of a product in which all students and
faculty members are matched unconditionally. All resulting rows are not shown in
the figure. The last and first names are selected from the STUDENT, table and a

Figure 7-1 Cartesian product.

SQL> SELECT Last, First, Name
2 FROM student, faculty;

LAST FIRST NAME
- -
Diaz Jose Jones
Tyler Mickey Jones
Patel Rajesh Jones
Rickles Deborah Jones
Lee Brian Jones
Khan Amir Jones
Diaz Jose Williams
Tyler Mickey Williams
. . .
Patel Rajesh Collins
Rickles Deborah Collins
Lee Brian Collins
Khan Amir Collins

48 rows selected.

SQL>

ShahCh07v3.qxd 4/16/04 11:56 AM Page 157

158 Chap. 7 Multiple Tables: Joins and Set Operations

name is selected from the FACULTY table.There is no join condition issued.The result
is 48 rows, because the product of two tables with m and n rows, respectively, returns

The STUDENT table has 6 rows, and the FACULTY table has 8 rows,
hence the result If you were looking for each student’s last name and
his or her faculty advisor’s name, you would use a join condition using the STUDENT
table’s foreign key FacultyId and the FACULTY table’s primary key FacultyId to find
matching rows.

The Cartesian product is covered in this section, but it is not a join operation.
There is no join without a join condition. In Oracle, you will perform a Cartesian
product by not providing enough join conditions in the SELECT query. Remember
that the number of join conditions is one less than the number of table names used
in the FROM clause. There are four types of joins in Oracle:

1. Equijoin.
2. Nonequijoin.
3. Outer join.
4. Self-join.

Equijoin

The equijoin is a join with a join condition involving common columns from two tables.
If you need to get information about a student from the STUDENT table and corre-
sponding information about the faculty advisor from the FACULTY table, you would
use the following syntax:

SELECT columnnames
FROM tablenames
WHERE join condition(s);

The column names include columns from both tables separated by commas, table
names are all tables used separated by commas, and the join condition is a condition
that includes common columns from each table. The join condition normally (but
not always) includes a foreign key column from one table and the referenced pri-
mary key column from the other table. Suppose you want to get a student’s last
name, the student’s first name, the faculty advisor’s name, and the faculty advisor’s
phone number. You would get them from the STUDENT and FACULTY tables.
The common column in both tables is FacultyId, which is the foreign key in the child
STUDENT table and the primary key in the parent FACULTY table. The join con-
dition will return the requested information from rows in two tables where the Facul-
tyId value is same.The rows without a match are not selected by the query. Figure 7-2
shows the result from an equijoin.

In Figure 7-2, you see that all students are picked from the STUDENT table,
but faculty members are picked based on the FacultyId in the student rows.The facul-
ty member Collins is not selected because there is no match for it1FacultyId = 3332

16 # 8 rows2.
m # n rows.

ShahCh07v3.qxd 4/16/04 11:56 AM Page 158

Join 159

Figure 7-2 Equijoin.

SQL> SELECT student.Last || ’, ’ || student.First STUDENT,
2 faculty.Name FACULTY, faculty.Phone TEL
3 FROM student, faculty
4 WHERE student.FacultyId = faculty.FacultyId
5 /

STUDENT FACULTY TEL
- -
Diaz, Jose Mobley 529
Tyler, Mickey Chang 587
Patel, Rajesh Jones 525
Rickles, Deborah Chang 587
Lee, Brian Sen 579
Khan, Amir Williams 533

6 rows selected.

SQL>

in the STUDENT table. On the other hand, Chang is picked twice
because it appears twice as a value in the foreign key column of the STUDENT table.

The Cartesian product, as mentioned earlier, is rarely useful, but equijoin is a
very important operation in database querying.Another thing to be noted is the use
of tablename.columnname. When columns are retrieved from more than one table,
the use of a table name qualifier in front of the column name tells Oracle to retrieve
that column from the specified table. Oracle is pretty smart about it. If a column
name exists in only one of the two tables involved in the query, it is not necessary to
use a table name as a qualifier. If a column exists in both tables, you must use the
table name qualifier. The join condition in an equijoin will normally have the table
name qualifier. Because the join condition usually has the same column names from
two tables, the column names become ambiguous without a qualifier. The qualifier
actually improves performance because you are telling the Oracle server where to
go to find that column. Remember that the two join columns need not have the
same name.

Sometimes, the required information is in more than two tables. In this case,
the FROM clause will include all needed tables, and the WHERE clause will have
more than one join condition. If you need to join n tables, you would need
join conditions. In our NamanNavan (N2) Corporation database, an employee’s de-
mographic information is in the EMPLOYEE table. The EMPLOYEE table has
three foreign keys: PositionId, referencing the POSITION table; QualId, referenc-
ing the QUALIFICATION table; and DeptId, referencing the DEPT table. You
would need to join four tables to retrieve information from all those tables. This
means the query will have join conditions.4 - 1 = 3

n - 1

1FacultyId = 5552

ShahCh07v3.qxd 4/16/04 11:56 AM Page 159

160 Chap. 7 Multiple Tables: Joins and Set Operations

Figure 7-3 Multiple joins.

SQL> SELECT employee.Lname || ’, ’ || employee.Fname EMPLOYEE,
2 dept.DeptName DEPARTMENT, position.PosDesc POSITION
3 FROM employee, dept, position
4 WHERE employee.DeptId = dept.DeptId
5 AND employee.PositionId = position.PositionId;

EMPLOYEE DEPARTMENT POSITION
- -
Smith, John Finance President
Houston, Larry Marketing Manager
Roberts, Sandi Finance Manager
McCall, Alex InfoSys Programmer
Dev, Derek InfoSys Manager
Shaw, Jinku Sales Manager
Garner, Stanley Sales Manager
Chen, Sunny Finance Accountant

8 rows selected.

SQL>

The query will look like the one shown in Figure 7-3. For simplicity, we will
join three tables using two join conditions. There is no limit on the number of join
conditions within a query.

The multiple-join example selects information from three tables using a query
with two join conditions. If you look at the query, the table qualifiers are used quite
a few times. There is a way to shorten and simplify this query.

Table Aliases

In Chapter 5, you learned about column aliases, which are used for renaming column
headings in a query. Table aliases are used to avoid using lengthy table names over
and over again in a query. A table alias can be from 1 to 30 characters long. Normally,
very short alias names are used to shorten the query and save some keystrokes. The
table alias appears in the FROM clause of the SELECT query.A table name is written,
followed by a space, and then a table alias is supplied. Though they appear after the
SELECT clause, alias names can also be used as qualifiers for column names in the
SELECT clause. All table aliases are valid only in the SELECT query, where they
are named and used.

In Figure 7-4, you will see the query from Figure 7-3 with table aliases. The
results obtained from the queries in Figures 7-3 and 7-4 are similar, but the query
in Figure 7-4 is shortened by the use of table aliases. In this example, we joined the

ShahCh07v3.qxd 4/16/04 11:56 AM Page 160

Join 161

Figure 7-4 Table aliases.

SQL> SELECT e.Lname || ’, ’ || e.Fname EMPLOYEE,
2 d.DeptName DEPARTMENT, q.QualDesc QUALIFICATION
3 FROM employee e, dept d, qualification q
4 WHERE e.DeptId = d.DeptId
5 AND e.QualId = q.QualId
6 /

EMPLOYEE DEPARTMENT QUALIFICATI
-
Smith, John Finance Doctorate
Houston, Larry Marketing Masters
Roberts, Sandi Finance Masters
McCall, Alex InfoSys Associates
Dev, Derek InfoSys Doctorate
Garner, Stanley Sales High School
Chen, Sunny Finance Bachelors

7 rows selected.

SQL>

EMPLOYEE table with the QUALIFICATION tables instead of the POSITION
table. The result contains seven rows in Figure 7-4 instead of eight rows, as in
Figure 7-3, because one of the employees does not have a QualId.

Additional Conditions

In addition to join conditions, you may use additional conditions using the AND oper-
ator to restrict information. Suppose you want to see the information of Figure 7-4
for employees belonging to department number 10 only. Figure 7-5 shows the use of
additional condition with the AND operator where the information is displayed for

only. The three tables are joined for employees in Department 10,
which results in three rows instead of all eight employee rows.

Nonequijoin

There is no matching column in the EMPLEVEL table for the Salary column in the
EMPLOYEE table. The only possible relationship between the two tables is be-
tween the Salary column of the EMPLOYEE table and the LowSalary and High-
Salary columns in the EMPLEVEL table. The join condition for these tables can be
written using any operator other than the operator. That is why it is called non-
equijoin. Figure 7-6 is an example of a nonequijoin.

The nonequijoin condition of Figure 7-6 could have been written as

e.Salary >= l.LowSalary AND e.Salary <= l.HighSalary;

=

DeptId = 10

ShahCh07v3.qxd 4/16/04 11:56 AM Page 161

162 Chap. 7 Multiple Tables: Joins and Set Operations

Figure 7-5 Additional condition with join.

SQL> SELECT e.Lname || ’, ’ || e.Fname EMPLOYEE,
2 d.DeptName DEPARTMENT, q.QualDesc QUALIFICATION,
3 p.PosDesc POSITION
4 FROM employee e, dept d, qualification q, position p
5 WHERE e.DeptId = d.DeptId
6 AND e.QualId = q.QualId
7 AND e.PositionId = p.PositionId
8 AND e.DeptId = 10
9 /

EMPLOYEE DEPARTMENT QUALIFICATI POSITION
-
Smith, John Finance Doctorate President
Roberts, Sandi Finance Masters Manager
Chen, Sunny Finance Bachelors Accountant

SQL>

Figure 7-6 Nonequijoin.

SQL> SELECT e.Lname || ’, ’ || e.Fname EMPLOYEE, e.Salary, l.LevelNo
2 FROM employee e, emplevel l
3 WHERE e.Salary BETWEEN l.LowSalary AND l.HighSalary
4 /

EMPLOYEE SALARY LEVELNO
-
Shaw, Jinku 24500 1
Garner, Stanley 45000 2
Chen, Sunny 35000 2
Roberts, Sandi 75000 3
McCall, Alex 66500 3
Dev, Derek 80000 3
Smith, John 265000 4
Houston, Larry 150000 4

8 rows selected.

SQL>

If you look at the EMPLEVEL table, none of the salaries appears in more than one
level. In other words, there is no overlapping. None of the employees makes a salary
that is not included in the range of salaries. For these two reasons, each employee
appears once in the result. Note that none of the columns are ambiguous, so table
aliases are not necessary (though they are used here in this example).

ShahCh07v3.qxd 4/16/04 11:56 AM Page 162

Join 163

Outer Join

You saw in the equijoin that the rows from two tables are selected only if the common
column values are the same in both tables. If a row in one table does not have a
matching value in the other table, it is not joined. Figure 7-2 displayed all students
from the STUDENT table and their advisors from the FACULTY table. Some of
the faculty members are not any student’s advisor, so they did not get selected. Sup-
pose you also want to see all those faculty advisor names. Then, you would change
your query’s join condition and create a join known as an outer join.

The table that does not contain the matching value is known as the deficient
table. In our case, the deficient table is the STUDENT table, because it does not
contain all faculty IDs. The outer join uses the operator in the join condition on
the deficient side. (You will see it soon in Figure 7-8, which compares equijoin and
outer join on these tables.) The operator can be used on any side of the join
condition, but it cannot be used on both sides in one condition.The general syntax is

SELECT tablename1.columnname, tablename2.columnname
FROM tablename1, tablename2
WHERE tablename1.columnname (+) = tablename2.columnname;

The join condition will look different if the operator is used on the right
side. For example,

WHERE tablename1.columnname = tablename2.columnname (+);

Figure 7-7 shows an outer join using the EMPLOYEE and QUALIFICATION
tables. The outer join operator is used on the QUALIFICATION side, because1+2

1+2

1+2

1+2

Figure 7-7 Outer join.

SQL> SELECT e.Fname || ’, ’ || e.Lname EMPLOYEE, q.QualDesc
2 FROM employee e, qualification q
3 WHERE e.QualId = q.QualId (+)
4 /

EMPLOYEE QUALDESC
-
John Smith Doctorate
Larry Houston Masters
Sandi Roberts Masters
Alex McCall Associates
Derek Dev Doctorate
Jinku Shaw
Stanley Garner High School
Sunny Chen Bachelors

8 rows selected.

SQL>

ShahCh07v3.qxd 4/16/04 11:56 AM Page 163

164 Chap. 7 Multiple Tables: Joins and Set Operations

Figure 7-8 Comparing outputs from outer join and equijoin.

SQL> SELECT s.First || ' ' || s.Last STUDENT,
2 f.Name ADVISOR
3 FROM faculty f, student s
4 WHERE s.FacultyId (+) = f.facultyId
5 /

STUDENT ADVISOR
-
Rajesh Patel Jones
Jose Diaz Mobley
Amir Khan Williams

Vajpayee
Collins

Brian Lee Sen
Rivera

Mickey Tyler Chang
Deborah Rickles Chang

9 rows selected.

SQL> SELECT s.First || ' ' || s.Last STUDENT,
2 f.Name ADVISOR
3 FROM faculty f, student s
4 WHERE s.FacultyId = f.facultyId
5 /

STUDENT ADVISOR
-
Jose Diaz Mobley
Mickey Tyler Chang
Rajesh Patel Jones
Deborah Rickles Chang
Brian Lee Sen
Amir Khan Williams

6 rows selected.

SQL>

it is the deficient table or it generates a null value for the row(s) in the EMPLOYEE
table without any qualification value. The equijoin would have returned seven
employees, but the outer join also includes one extra employee without any
qualification.

Figure 7-8 compares outputs from outer join and equijoin on the same tables.
The equijoin returns six students with their faculty advisors’ names, whereas the
outer join returns three extra rows with faculty names. The outer join operator
is used on the STUDENT table’s side, because it generates null values for faculty
members with no match in the STUDENT table.

1+2

ShahCh07v3.qxd 4/16/04 11:56 AM Page 164

Join 165

Self-Join

A self-join is joining a table to itself. It sounds meaningless, but think about it using
the following scenario: In the EMPLOYEE table, EmployeeId is the primary key
column that describes each entity. For example, EmployeeId 200 represents employee
Shaw, Jinku. The table also has another column called Supervisor, which contains
IDs of employee supervisors. How can you find name of the supervisor for an em-
ployee? You can look up the supervisor ID, go to the EmployeeId column to find its
match, and then read the name. This is easier said than done, however. A self-join is
one join that is not so easy to understand.

When a table is joined to itself, two copies of the same table are loaded or
used. They are treated like any two different tables, and a join is produced from
those two copies. Let us explain that by using the EMPLOYEE table. The following
operations are performed in the self-join of Figure 7-9:

• Two copies of the EMPLOYEE table are created with the aliases e and s.
• An employee’s last name is picked from the e table, and the corresponding

Supervisor ID is retrieved.
• The matching EmployeeId is found from the s table. The first employee in

the e table does not have a supervisor and so is not picked.
• The last name from the s table is retrieved based on the EmployeeId.

Figure 7-9 Self-join.

SQL> SELECT e.Lname || ’, ’ || e.Fname Employee,
2 s.Lname || ’, ’ || s.Fname Manager
3 FROM employee e, employee s
4 WHERE e.Supervisor = s.EmployeeId;

EMPLOYEE MANAGER
- -
Houston, Larry Smith, John
Roberts, Sandi Smith, John
McCall, Alex Dev, Derek
Dev, Derek Smith, John
Shaw, Jinku Garner, Stanley
Garner, Stanley Smith, John
Chen, Sunny Roberts, Sandi

7 rows selected.

SQL>

In short, the table is looked at twice, once for the employee and once for the super-
visor. The Indo–US (IU) College database also contains a table, which can be used
in self-join. Table COURSE contains a PreReq column that references its own pri-
mary key, CourseId. You will perform this self-join in the chapter’s lab activity.

ShahCh07v3.qxd 4/16/04 11:56 AM Page 165

166 Chap. 7 Multiple Tables: Joins and Set Operations

SET OPERATORS

In Chapter 1, you learned about union, intersection, and difference operations. If you
recall, these operations are possible on “union-compatible” tables. The implementa-
tion of these operations is through the use of set operators. The union compatibility
is achieved or the set operations are performed on results from two independent
queries. The output from both queries must return the same number of columns, and
respective columns must have a similar domain. Figure 7-10 lists all set operators and
their use.

The general syntax for any set operation is

SELECT-Query1
Set operator
SELECT-Query2;

where Set operator is one of the four set operators described in Figure 7-10a.

Set Operator Use

UNION It returns all rows from both queries, but duplicate rows are not repeated.

UNION ALL It returns all rows from both queries, and it displays all duplicate rows.

INTERSECT It returns all rows that appear in both queries’ results.

MINUS It returns rows that are returned by the first query minus rows that are
returned by the second query.

Figure 7-10a Set operators.

In Figure 7-10b, set operators UNION, INTERSECT and MINUS are shown
using Venn diagrams. The left circle represents the first table, and the right circle
represents the second table. The shaded area is the area selected by each operation.
The UNION operator selects all rows from the first table as well as the second table,
so both circles are entirely shaded. The INTERSECT operator selects rows present
in both tables, so the common area is shaded. The MINUS operator selects rows in
the first table that are not present in the second table, so the area exclusively be-
longing to the first table is shaded.

We will use the STUDENT table from the IU College database, which has all
student records. Now, we will use another table called WORKER (see Fig. 7-11),
which contains staff members of the college and also student workers.

Union

The UNION operator takes output from two queries and returns all rows from
both results. The duplicate rows are displayed only once. If you perform union on

ShahCh07v3.qxd 4/16/04 11:56 AM Page 166

Set Operators 167

UNION

INTERSECT

MINUS

Figure 7-10b Set operators—illustration with Venn diagrams.

two very large tables, use a WHERE clause to filter rows. All six student’s rows
are selected from the first query, and four rows are selected from the second
query. Two rows from the second query are duplicate rows (ID 00103 and ID
00105), and they are not repeated. Figure 7-12 lists all students and staff members
in the result.

Union All

The UNION ALL operation is similar to the UNION operation.The only difference
is that UNION ALL operation also displays duplicate rows. If you find UNION ALL
of the STUDENT and WORKER tables, you will get six rows from the first query
and six rows from the second query (see Fig. 7-13).

Figure 7-11 WORKER table.

WORKER (WorkerId, Last, First)

WorkerId Last First

00110 Borges Luz

00111 Bayer Julia

00103 Rickles Deborah

00113 Marte Noemi

00105 Khan Amir

00107 Feliciano Sandi

ShahCh07v3.qxd 4/16/04 11:56 AM Page 167

168 Chap. 7 Multiple Tables: Joins and Set Operations

Figure 7-12 UNION operation.

SQL> SELECT StudentId ID, Last, First FROM student
2 UNION
3 SELECT WorkerId, Last, First FROM worker
4 /

ID LAST FIRST
- -
00100 Diaz Jose
00101 Tyler Mickey
00102 Patel Rajesh
00103 Rickles Deborah
00104 Lee Brian
00105 Khan Amir
00107 Feliciano Sandi
00110 Borges Luz
00111 Bayer Julia
00113 Marte Noemi

10 rows selected.

SQL>

Figure 7-13 UNION ALL operation.

SQL> SELECT StudentId ID, Last, First FROM student
2 UNION ALL
3 SELECT WorkerId, Last, First FROM worker
4 /

ID LAST FIRST
- -
00100 Diaz Jose
00101 Tyler Mickey
00102 Patel Rajesh
00103 Rickles Deborah
00104 Lee Brian
00105 Khan Amir
00110 Borges Luz
00111 Bayer Julia
00103 Rickles Deborah
00113 Marte Noemi
00105 Khan Amir

ID LAST FIRST
- -
00107 Feliciano Sandi

12 rows selected.

SQL>

ShahCh07v3.qxd 4/16/04 11:56 AM Page 168

Set Operators 169

Figure 7-14 INTERSECT operation.

SQL> SELECT StudentId ID, Last, First FROM student
2 INTERSECT
3 SELECT WorkerId, Last, First FROM worker
4 /

ID LAST FIRST
-
00103 Rickles Deborah
00105 Khan Amir

SQL>

Intersect

The INTERSECT operation works on output from two separate queries and returns
rows that appear in both outputs. In the student and worker example, INTERSECT
will return students who are also workers at the college. In Figure 7-14, you see only
two student rows, which are the only students appearing in the WORKER table.

Minus

The MINUS operation is same as the DIFFERENCE operation covered in Chapter 1.
When MINUS is performed on outputs from two queries, the result is the rows in
the first query’s result that are not in the second query’s result. Remember that the
STUDENT table minus the WORKER table is not the same as the WORKER table
minus the STUDENT table. Figure 7-15 is an example of a minus operation in which
the result includes students who are not workers. Figure 7-16 shows workers who
are not students.

Join operations are useful, but sometimes, they are achieved through a very
complex query.Talking about complexity, Figure 7-17 gets information from six tables

Figure 7-15 Student MINUS Worker.

SQL> SELECT StudentId ID, Last, First FROM student
2 MINUS
3 SELECT WorkerId, Last, First FROM worker
4 /

ID LAST FIRST
- -
00100 Diaz Jose
00101 Tyler Mickey
00102 Patel Rajesh
00104 Lee Brian

4 rows selected.

SQL>

ShahCh07v3.qxd 4/16/04 11:56 AM Page 169

170 Chap. 7 Multiple Tables: Joins and Set Operations

Figure 7-16 Worker MINUS Student.

SQL> SELECT WorkerId ID, Last, First FROM worker
2 MINUS
3 SELECT StudentId, Last, First FROM student
4 /

ID LAST FIRST
- -
00107 Feliciano Sandi
00110 Borges Luz
00111 Bayer Julia
00113 Marte Noemi

4 rows selected.

SQL>

Figure 7-17 Joining them all.

SQL> SELECT e.Fname || ' ' || e.Lname "NAME",
2 s.Fname || ' ' || s.Lname "SUPERVISOR",
3 PosDesc, DeptName, QualDesc, LevelNo
4 FROM employee e, position p, dept d,
5 qualification q, employee s, emplevel l
6 WHERE e.PositionId=p.PositionId
7 AND e.DeptId =d.DeptId
8 AND e.QualId = q.QualId (+)
9 AND e.Supervisor=s.EmployeeId (+)

10 AND e.Salary BETWEEN l.LowSalary AND l.HighSalary
11 ORDER BY e.Lname, e.Fname;

NAME SUPERVISOR POSDESC DEPTNAME QUALDESC LEVELNO
- -
Sunny Chen Sandi Roberts Accountant Finance Bachelors 2
Derek Dev John Smith Manager InfoSys Doctorate 3
Stanley Garner John Smith Manager Sales High School 2
Larry Houston John Smith Manager Marketing Masters 4
Alex McCall Derek Dev Programmer InfoSys Associates 3
Sandi Roberts John Smith Manager Finance Masters 3
Jinku Shaw Stanley Garner Manager Sales 1
John Smith President Finance Doctorate 4

8 rows selected.

SQL>

ShahCh07v3.qxd 4/16/04 11:56 AM Page 170

Chap. 7 Exercise Questions 171

(actually five, because EMPLOYEE table is used twice) with two equijoins, two
outer joins, one nonequijoin, and one self-join. The result contains everything we
need to know about employees!

IN A NUTSHELL . . .

� Two tables can be joined with a common column. Usually, the common
columns are a foreign key in one table and the primary key in the other
table that is referenced.

� If a join condition is not used in a multitable query, it results in a Cartesian
product.

� Four types of joins in Oracle are equijoin, nonequijoin, outer join, and self-join.
� It is possible to join more than two tables in a database. You need

conditions to join n tables.
� Table aliases are used in a query to avoid typing long table names. The table

aliases are known only in the query where they are defined.
� An additional condition is used along with the join condition to filter out

some rows.
� A nonequijoin has a join condition that does not use the equality operator.
� An outer join is achieved by using the operator on the deficient table’s

side in the join condition. In other words, the operator is used on the
side that generates null values. The outer join also selects rows without a
matching row in another table involved in the join operation.

� A self-join joins a table with self.This operation uses two copies of same table.
� The set operators UNION, UNION ALL, INTERSECT, and MINUS are

used to connect output from two individual SELECT queries. Both query
outputs must return the same number of columns with similar domains.

EXERCISE QUESTIONS

True/False:
1. You always need at least two different tables for a join.
2. If a table has three rows and another table has four rows, their product will contain seven

rows.
3. The common column in two tables must have same name to join them.
4. A table alias is known in the query in which it is created.
5. In an outer join, the operator can be used on any one side of the equality sign,

but it cannot be on both sides of a join condition.
6. The set operator UNION does not repeat duplicate rows, but UNION ALL does.
7. TableA MINUS TableB is always the same as TableB MINUS TableA.
8. A self-join can be performed on any table, because all you need is one table.

1=21+2

1+2
1+2

1=2

n - 1

ShahCh07v3.qxd 4/16/04 11:56 AM Page 171

172 Chap. 7 Multiple Tables: Joins and Set Operations

9. An outer join usually returns more information than an equijoin on the same tables.
10. Two tables must have established foreign key–primary key relationship to perform a

nonequijoin on them.

Define the Following Terms, and Give One Example of Each:
1. Equijoin.
2. Outer join.
3. Self-join.
4. Minus.
5. Cartesian product.

Answer the Following Questions:
1. What is the use of the set operator INTERSECT?
2. In which situations would you use a self-join?
3. When is it appropriate to use an outer join?
4. When would you use a MINUS operation?
5. How would you join five tables in a database?

LAB ACTIVITY

1. Use the N2 Corporation database tables to design the following queries.
(Use the spooling method to capture all queries and results in the CHAP7SP1.LST file.)
a. Display all employee names and their department names.
b. Find name of the supervisor for employee number 433.
c. Find all employees’ full names (lastname, firstname format) with salary and their su-

pervisor’s name with salary.
d. Find each employee’s salary information and level based on the salary.
e. Display each employee’s name, department name, position description, and qualifica-

tion description. Which employee is missing? Why?
f. Find all employees in the sales department.
g. Display employee names and dependent information using an outer join.
h. Find the names of employees and number of years worked along with their depart-

ment names in descending order by number of years worked.
i. Who works in the same department in which John Smith works?

2. Use the IU College database tables to design the following queries.
(Use the spooling method to capture all queries and results in the CHAP7SP2.LST file)
a. Display a student’s full name along with his or her major’s description.
b. Get the names of students who received a final grade of F in Winter 2003.
c. Display student names, their faculty advisor names, and faculty office location.
d. Get Spring 2003 course sections with the faculty member assigned to teach the class.

Include course sections without any faculty assigned to them.
e. Display course titles along with their prerequisite names. Display courses without

prerequisite as well.

ShahCh07v3.qxd 4/16/04 11:56 AM Page 172

8

Subqueries: Nested

Queries

IN THIS CHAPTER . . .

� Subqueries or nested queries are introduced for data retrieval.
� Various operators, such as ANY, SOME, and ALL, are introduced.
� Subqueries are used with other data management and data definition language

statements.
� Multiple INSERT statements, such as INSERT ALL and INSERT FIRST,

are used.
� A new MERGE statement is introduced.
� Correlated queries are introduced with EXISTS and NOT EXISTS operators.

In Chapter 5, you learned data retrieval techniques to obtain data from a sin-
gle table with the SELECT query. You also learned the use of various clauses and
functions used in SELECT statements in Chapter 6. In Chapter 7, you learned to
create queries where data are retrieved from more than one table or with more than
one query. Sometimes, you can accomplish tasks by joining two or more tables, by
joining a table to itself, or by using the output from one query as data in another.
The queries can be nested to create a table based on an existing table, to populate a
table with rows from another table, or to perform updates and deletions.

ShahCh08v3.qxd 4/16/04 11:57 AM Page 173

174 Chap. 8 Subqueries: Nested Queries

SUBQUERY

Subqueries are also known as nested queries. A subquery is usually a SELECT
query within one of the clauses in another SELECT query. Very powerful queries
can be designed by using simple subqueries. A subquery is very useful when a query
based on a table depends on the data in that subquery itself. The subquery can be
used within a WHERE, HAVING, or FROM clause of another SELECT query.
Subqueries are of two types:

1. Single-row subquery: a subquery that returns only one row of data; it is
also known as a scalar subquery.

2. Multiple-row subquery: a subquery that returns more than one row of
data.

Single-Row Subquery

The general syntax is

SELECT columnlist
FROM tablename
WHERE columnname operator
(SELECT columnnames
FROM tablename
WHERE condition);

There are certain rules you have to follow while creating a subquery:

� The subquery must be enclosed within a pair of parentheses.
� The subquery returns one column from one row in most cases. If no row is

returned, the value is null. If more than one row is returned, an error occurs.
� The ORDER BY clause cannot be used in a subquery.
� The subquery is used on the right side of the condition.
� Relational operators are used in the

outer query’s condition.

When a statement is written with a subquery, the inner query (subquery) is exe-
cuted first. The inner query returns a value or a set of values to the outer query.
Next, the outer query is executed with the result from the inner query.

In Figure 8-1, you see a subquery based on two tables. It returns a result similar
to the one in Figure 7-5.The subquery example is substituted for a join condition and
an additional condition of Figure 7-5. The inner query finds the DeptId 10 from the
DEPT table based on The result is used in the condition
of the outer query, which returns employees in

A subquery can also be based on only one table. Suppose you want to find the
names of employees who make more salary than employee Dev 1EmployeeId

DeptId = 10.
DeptName = ‘FINANCE’.

1= , 6 7 1or !=2, 7 , 7 = , 6 , and 6 =2

ShahCh08v3.qxd 4/16/04 11:57 AM Page 174

Subquery 175

You will find the salary for the employee in the inner query first and then
use it in the outer query. For example, in Figure 8-2, the inner query finds the salary
for employee Dev, and the outer query compares it with the salary received by other
employees with the Operator used instead of to include
employee Dev in the output as well.

Similarly, we can write queries to tackle problems like finding employees who
work in the same department in which John Smith works or employees who do not

77 = is7 = operator.

= 5432.

SQL> SELECT Lname, Fname, Salary, DeptId
2 FROM employee
3 WHERE DeptId =
4 (SELECT DeptId
5 FROM dept
6 WHERE UPPER (DeptName) = ’FINANCE’);

LNAME FNAME SALARY DEPTID
- -
Smith John 265000 10
Roberts Sandi 75000 10
Chen Sunny 35000 10

SQL>

Figure 8-1 Subquery using two tables.

SQL> SELECT Lname, Fname, Salary, DeptId
2 FROM employee
3 WHERE Salary >=
4 (SELECT Salary
5 FROM employee
6 WHERE UPPER(Lname) = ’DEV’);

LNAME FNAME SALARY DEPTID
- -
Smith John 265000 10
Houston Larry 150000 40
Dev Derek 80000 20

SQL>

Figure 8-2 Subquery using one table.

work in the same department. Figure 8-3 shows all employees who do not work in
employee John Smith’s department. For simplicity, the inner query does not contain
this multiple condition to check for the last name as well as the first name:

WHERE UPPER(Lname) = ‘SMITH’ AND UPPPER(Fname) = ‘JOHN’;

ShahCh08v3.qxd 4/16/04 11:57 AM Page 175

176 Chap. 8 Subqueries: Nested Queries

A subquery may be nested to more levels. In a multilevel subquery, the inner-
most query executes first, and then the execution propagates outward. In a three-
level subquery, the output from the innermost query is used by the query nesting it,
and the output of that query is used by the outmost query that encloses it.

In the Indo–US (IU) College database, each student has an assigned faculty ad-
visor. The faculty advisor has an office in one of the college buildings. Suppose a stu-
dent wants to find out location of his or her advisor’s office.The result can be obtained
by joining the STUDENT, FACULTY, and LOCATION tables. Alternately, a three-
level subquery can render the same result as shown in Figure 8-4. Student Brian Lee
wants to see his faculty advisor during office hours. First, the innermost query finds
out the FacultyId of the advisor from the STUDENT table, which is used by enclosing
a query to find the RoomId from the FACULTY table, which in turn is used by the
outermost query to find the Building and RoomNo from the LOCATION table.

Creating a Table Using a Subquery You can create a table by using a
nested SELECT query. The query will create a new table and populate it with the
rows selected from the other table. The general syntax is

CREATE TABLE tablename
AS
SELECT-query;

When a new table is created with a subquery or a nested query, the primary
key constraint is not transferred to the new table from the existing table. The NOT
NULL is the only type of constraint that gets transferred to the new table. Other
constraints can be added to the new table with the ALTER TABLE statement.

In Figure 8-5, new table TEMP is created based on the EMPLOYEE table. The
SELECT query selects two employees belonging to Department 20 and adds them to

Figure 8-3 Subquery with ! = operator.

SQL> SELECT Lname, Fname, Salary, DeptId
2 FROM employee
3 WHERE DeptId !=
4 (SELECT DeptId
5 FROM employee
6 WHERE UPPER(Lname) = ’SMITH’)
7 /

LNAME FNAME SALARY DEPTID
- -
Houston Larry 150000 40
McCall Alex 66500 20
Dev Derek 80000 20
Shaw Jinku 24500 30
Garner Stanley 45000 30

5 rows selected.

SQL>

ShahCh08v3.qxd 4/16/04 11:57 AM Page 176

Subquery 177

SQL> SELECT Building, RoomNo
2 FROM location
3 WHERE RoomId =
4 (SELECT RoomId
5 FROM faculty
6 WHERE FacultyId =
7 (SELECT FacultyId
8 FROM student
9 WHERE UPPER(Last) = ’LEE’

10 AND UPPER(First) = ’BRIAN’));

BUILDIN ROO
- - - - - - - - - -
Gandhi 103

1 row selected.

SQL>

Figure 8-4 Subquery to three levels.

SQL> CREATE TABLE temp
2 AS
3 SELECT EmployeeId, Lname, Fname, Salary
4 FROM employee
5 WHERE DeptId = 20;

Table created.

SQL> DESCRIBE temp

Name Null? Type
-
EMPLOYEEID NUMBER(3)
LNAME NOT NULL VARCHAR2(15)
FNAME NOT NULL VARCHAR2(15)
SALARY NUMBER(6)

SQL> SELECT * FROM temp;

EMPLOYEEID LNAME FNAME SALARY
- -

433 McCall Alex 66500
543 Dev Derek 80000

2 rows selected.

SQL>

Figure 8-5 CREATE using a subquery.

ShahCh08v3.qxd 4/16/04 11:57 AM Page 177

178 Chap. 8 Subqueries: Nested Queries

the newly created table.The new table contains only four attributes, as selected by the
inner query. The figure also shows use of the new TEMP table with the DESCRIBE
and SELECT statements.A user may add more constraints to this newly created table
with the ALTER TABLE statement.

INSERT Using a Subquery An existing table can be populated with a sub-
query. The table must already exist to insert rows into it. INSERT with a subquery
does not create a new table. The general syntax is

INSERT INTO tablename [(column list)]
SELECT columnnames FROM tablename WHERE condition;

The INSERT statement does not use the VALUES clause.The subquery replaces
the VALUES clause and provides values for the new rows.The column list in INSERT
is optional.The column list can be used from the nested SELECT query.

In the example of Figure 8-6, all employees in Department 10 of the EMPLOY-
EE table are selected, and the TEMP table is populated with those employees only.
The TEMP table already had two rows; three more rows are added with INSERT.
Now, the table contains five rows in all. The TEMP table contains four columns, but
values are inserted into three columns only. Employee salaries are not included for
employees from Department 10.

Figure 8-6 INSERT using a subquery.

SQL> INSERT INTO temp (EmployeeId, Lname, Fname)
2 SELECT EmployeeId, Lname, Fname
3 FROM employee
4 WHERE DeptId = 10
5 /

3 rows created.

SQL> SELECT *
2 FROM temp;

EMPLOYEEID LNAME FNAME SALARY
- -

433 McCall Alex 66500
543 Dev Derek 80000
111 Smith John
123 Roberts Sandi
222 Chen Sunny

5 rows selected.

SQL>

ShahCh08v3.qxd 4/16/04 11:57 AM Page 178

Subquery 179

Inserting into Multiple Tables (Oracle9i Onward) In most cases, you
use the INSERT statement to add a row into a table. Oracle9i has new feature that
allows you to enter rows into multiple tables simultaneously. This feature is useful
for transferring, archiving, and denormalizing data.The multiple INSERT statement
is faster and more flexible than many one-row, simple INSERT statements. Two
multiple INSERT statements are:

1. INSERT ALL (conditional and unconditional)
2. INSERT FIRST

Unconditional INSERT ALL In this example, rows are selected from the
EMPLOYEE table and inserted into two existing tables, EMPLOYEE_SALARY
and EMPLOYEE_DEPT. Notice that these two tables contain different columns.
The inner SELECT statement retrieves rows from the EMPLOYEE table, and
those rows are inserted into two tables. The INSERT statement does not have any
conditions:

INSERT ALL
INTO employee_salary

VALUES(EmployeeId, Lname, Fname, Salary, Commission)
INTO employee_dept

VALUES(EmployeeId, Lname, Fname, DeptId, Supervisor)
SELECT EmployeeId, Lname, Fname, Salary, Commission, DeptId, Supervisor

FROM employee WHERE Salary > 50000 OR DeptId <> 40;

Conditional INSERT ALL In this example, the rows are inserted into tables
based on their individual conditions. The WHEN THEN clause is used with dif-
ferent conditions for inserting rows into different tables. Rows are inserted into the
EMPLOYEE_SALARY table if salary is higher than 50000. Rows are inserted into
the EMPLOYEE_DEPT table if DepartId is not equal to 40:

INSERT ALL
WHEN Salary > 50000 THEN INTO employee_salary

VALUES(EmployeeId, Lname, Fname, Salary, Commission)
WHEN DeptId <> 40 THEN INTO employee_dept

VALUES(EmployeeId, Lname, Fname, DeptId, Supervisor)
SELECT EmployeeId, Lname, Fname, Salary, Commission, DeptId, Supervisor

FROM employee WHERE Salary > 50000 OR DeptId <> 40;

Conditional INSERT FIRST The conditional INSERT FIRST statement
has the same syntax as the conditional INSERT ALL statement except for the key
word FIRST in place of ALL.The working of the statement, however, is different. It
tests conditions just like the INSERT ALL statement, but if a row satisfies both
conditions and it will be inserted into the first table
only, because the first condition of the WHEN clause is satisfied.

DeptId6 740,Salary 7 50000

Á

ShahCh08v3.qxd 4/16/04 11:57 AM Page 179

180 Chap. 8 Subqueries: Nested Queries

UPDATE Using a Subquery Another use of a subquery is in updating
data. If an employee is leaving and his or her position, supervisor, and salary infor-
mation are to be given to another existing employee, UPDATE can be performed
with a subquery. The general syntax is

UPDATE tablename
SET columnname = value or expression
WHERE columnname operator

(SELECT subquery);

For example, the NamanNavan (N2) Corporation is very pleased with the perform-
ance of the entire FINANCE team and decides to raise their salary by 10% (see
Fig. 8.7). The inner query supplies DeptId based on the department’s name, which
the outer query uses in its WHERE clause.

UPDATE employee
SET Salary = Salary * 1.10
WHERE DeptId =

(SELECT DeptId
FROM dept
WHERE UPPER(DeptName) = ’FINANCE’);

3 rows updated.

SQL>

Figure 8-7 UPDATE using a subquery.

An alternate syntax is

UPDATE tablename
SET (columnnames) =

(SELECT subquery)
[WHERE condition];

The optional WHERE clause is part of the outer UPDATE statement in the given
syntax. The inner SELECT query may contain another WHERE clause.

In the example of Figure 8-8, Jinku Shaw gets the position,
supervisor, and DeptId of employee Stanley Garner The
inner query returns three values, which are assumed by three columns in the outer
query. You must be careful with the order of columns in both the inner and outer
queries. The order of columns must be same in both queries.

DELETE Using a Subquery A row or rows from a table can be deleted
based on a value returned by a subquery. The general syntax is

DELETE FROM tablename
WHERE columnname =

(SELECT subquery);

1EmployeeId = 1352.
1EmployeeId = 2002

ShahCh08v3.qxd 4/16/04 11:57 AM Page 180

Subquery 181

For example, if a corporation decides to close the Accounting Department in Monroe
and all employees in the department are to be removed from the database, you will
use a DELETE statement with a subquery. You must remember that to remove a
department from the DEPT table, you must remove all employees from that de-
partment first. Failure to do so will result in constraint violation because of the exis-
tence of child rows in the EMPLOYEE table. In Figure 8-9, we have tried to remove
employees from the Accounting Department, but no rows have been deleted. There
is no constraint violation here, but the EMPLOYEE table does not contain any em-
ployees in the Accounting Department 1DeptId = 802.

Multiple-Row SubQuery

A multiple-row subquery returns more than one row. The operators used in single-
row subqueries cannot be used with multiple-row sub-
queries. Figure 8-10 shows special operators used with multiple-row subqueries.

1= , 6 7 , 7 , 7 = , 6 and 6 =2

SQL> UPDATE employee
2 SET (PositionId, Supervisor, DeptId) =
3 (SELECT PositionId, Supervisor, DeptId
4 FROM employee WHERE EmployeeId = 135)
5 WHERE EmployeeId = 200;

1 row updated.

SQL>

Figure 8-8 UPDATE using a subquery.

SQL> DELETE FROM employee
2 WHERE DeptId =
3 (SELECT DeptId FROM dept
4 WHERE UPPER (DeptName) = ’ACCOUNTING’);

0 rows deleted.

SQL>

Figure 8-9 DELETE using a subquery.

Operator Use

IN Equal to any of the values in a list.
ALL Compare the given value to every value returned by the subquery.
ANY or SOME Compare the given value to each value returned by the subquery.

Figure 8-10 Multiple-row subquery operators.

ShahCh08v3.qxd 4/16/04 11:57 AM Page 181

182 Chap. 8 Subqueries: Nested Queries

Let us look at examples of subqueries returning more than one row. You are
already familiar with the IN operator, which is an alternative to multiple OR condi-
tions. The IN operator looks for at least one match from the list of values provided.
In Figure 8-11, the inner query returns two values (111, 123) for faculty members in de-
partment 1. You cannot use here, but the IN operator is more appro-
priate. Use of here will result in an error. The outer query returns
students who have faculty 111 or 123 as their advisor.

the = operator
the = operator

The ANY operator can be used in combination with other relational opera-
tors. It serves like an OR operator, because it looks for a match to any one value!
For example:

� means less than the maximum value in the list.
� means equal to any value in the list (similar to IN).
� means higher than the minimum value in the list.

The inner query in Figure 8-12 returns four values (150000, 75000, 80000, and
45000). The operator checks for values larger than the minimum salary of7ANY

7ANY
=ANY
6ANY

SQL> SELECT StudentId, Last, First, FacultyId
2 FROM student
3 WHERE FacultyId IN
4 (SELECT FacultyId
5 FROM faculty WHERE DeptId = 1);

STUDE LAST FIRST FACULTYID
- -
00100 Diaz Jose 123
00102 Patel Rajesh 111

SQL>

Figure 8-11 Subquery with IN operator.

SQL> SELECT EmployeeId, Lname, Fname, Salary
2 FROM employee
3 WHERE Salary >ANY
4 (SELECT Salary FROM employee WHERE PositionId = 2)
5 AND PositionId <> 2;

EMPLOYEEID LNAME FNAME SALARY
- -

111 Smith John 265000
433 McCall Alex 66500

SQL>

Figure 8-12 Subquery with operator.7ANY

ShahCh08v3.qxd 4/16/04 11:57 AM Page 182

Top-N Analysis 183

45000 in the list. The outer query also checks for PositionId not equal to 2. Rows
with EmployeeId 111 and 433 are selected. You may use the operator SOME in
place of ANY to achieve the same result.

The ALL operator can also be used with relational operators. It serves like an
AND operator, because it looks for a match to all values! For example:

� means more than the maximum value.
� means less than the minimum value.
� is meaningless, because no value can be equal to all values in a list.

In Figure 8-13, the inner query returns four averages, one value per depart-
ment (125000, 73250, 34750, and 150000). The operator means the employee
with a salary less than the minimum in the list of values. From the original table in
Chapter 3, only one row—and EmployeeId 200 and salary of 24500—is picked. If
you change condition to you will see the “no rows selected” message.=ALL,

6ALL

= ALL
6ALL
7ALL

Try the query in Figure 8-12 with opera-
tors, and check out the results.

TOP-N ANALYSIS

Top-N queries are used to sort rows in a table and then to find the first-N largest or
first-N smallest values. For example, you want to find the bottom five salaries in a
company, the top three room capacities, or the last 10 employees hired by a compa-
ny, you would use a Top-N query.

The Top-N query uses an ORDER BY clause to sort rows in ascending or de-
scending order. The sorted rows are numbered with a pseudocolumn named
ROWNUM. If the rows are sorted in ascending order by the Top-N column, the
smallest value of the Top-N column is at the top of the list. The largest value of the
Top-N column is at the top of the list if the rows are sorted in descending order by
the Top-N column. You can display the required number of rows based on the
ROWNUM with The and are not allowed
with a ROWNUM pseudocolumn.

7 = operators76 or 6 = operators.

6ALL, 7ALL, 6ANY, and =ANY

SQL> SELECT EmployeeId, Lname, Fname, Salary
2 FROM employee
3 WHERE Salary <ALL
4 (SELECT AVG (Salary) FROM employee GROUP BY DeptId);

EMPLOYEEID LNAME FNAME SALARY
- -

200 Shaw Jinku 24500
SQL>

Figure 8-13 Subquery with operator.6ALL

ShahCh08v3.qxd 4/16/04 11:57 AM Page 183

184 Chap. 8 Subqueries: Nested Queries

In Figure 8-14, Capacity is the Top-N column. The rows in the LOCATION
table are sorted in descending order to get largest capacity at the top of the list. The
condition ROWNUM selects row numbers 1 through 4, the top-four capaci-
ties. The inner SELECT statement in the FROM clause is used as the data source
for the outer SELECT statement. Such a subquery is known as an inline view. The
inline view is a subquery that can be given an alias name for use in an SQL state-
ment, just like a table alias. An inline view is not stored as an object like the other
views created with a CREATE VIEW statement (see Chapter 9). A subquery may
not use the ORDER BY clause, but an inline view may.

6 = 4

In Figure 8-15, SALARY is the Top-N column. The rows in the EMPLOYEE
table are sorted in ascending order, bringing the lowest salaries to the top.The condi-
tion ROWNUM retrieves the three lowest-salaried employees.6 = 3

SQL> SELECT rownum, Building, RoomNo, Capacity
2 FROM (SELECT Building, RoomNo, Capacity
3 FROM location
4 ORDER BY Capacity DESC)
5 WHERE ROWNUM <= 4;

ROWNUM BUILDIN ROO CAPACITY
- -

1 Kennedy 204 50
2 Nehru 301 50
3 Nehru 309 45
4 Kennedy 206 40

SQL>

Figure 8-14 Top-4 capacities.

SQL> SELECT ROWNUM, Lname, Fname, Salary
2 FROM (SELECT Lname, Fname, Salary
3 FROM employee
4 ORDER BY Salary)
5 WHERE ROWNUM <= 3;

ROWNUM LNAME FNAME SALARY
- -

1 Shaw Jinku 24500
2 Chen Sunny 35000
3 Garner Stanley 45000

SQL>

Figure 8-15 Bottom-three salaries.

ShahCh08v3.qxd 4/16/04 11:57 AM Page 184

Correlated Subquery 185

Important Note about Top-N Analysis

Top-N analysis is explained here in a way that is consistent with the Oracle online
training documentation. You may not use the ORDER BY clause with an inner
subquery. If you cannot perform this analysis with the inline view, which contains an
ORDER BY clause in the inner query, create view with the GROUP BY clause in
the SELECT query. The GROUP BY clause contains an implicit ORDER BY op-
eration in the ascending order. You will be able to select the Top-N rows from the
view based on the ROWNUM pseudocolumn. The limitation is that only and

are allowed with the pseudocolumn ROWNUM. As the implied sort
is in the ascending order, the lowest values get moved to the top, and you will be
able to get only the bottom-N values. The Top-N analysis has worked without any
problems in Oracle9i, but I did face problems in Oracle8.The Oracle views are covered
in the next chapter.

MERGE STATEMENT

You can use the MERGE statement to perform INSERT and UPDATE operations
together. This operation is very useful in data warehousing. In Figure 8-16, WORK-
ER is the target table. The STUDENT and WORKER tables are merged based on
WorkerId and StudentId columns. If rows from two tables match, then the Last and
First columns are updated in the WORKER table (WorkerId 00103 and 00105). If
rows from the STUDENT table do not have a match in the WORKER table, those
rows are inserted in the WORKER table (WorkerId 00102, 00100, 00104, and 00101).

CORRELATED SUBQUERY

Correlated subqueries are different from the other subqueries explained earlier in this
chapter. In a correlated subquery, the inner (nested) query can reference columns from
the outer query. The inner query is executed once for each row in the outer query. In
other subqueries, the inner query was executed only once. It is a complex—but very
powerful—feature.The example in Figure 8-17 performs a correlated subquery.

First, Oracle selects a row from the outer query. Then, it finds the value of the
correlated column(s). Next, it executes the inner query for each row of the outer
query, sends the result of the inner query to the outer query, and executes the outer
query. If the row satisfies the condition, it outputs the row. Then, it selects the next
row from outer query and repeats the same procedure.

In Figure 8-17, each employee’s salary is matched with the maximum salary of
his or her department (outer.DeptId). The result is employees with the maximum
salary in their respective departments. With a simple GROUP BY clause, you can
find the maximum salary for each department, but you cannot find employees making
those salaries.A correlated subquery, however, enables you to find that information.

6 = operators
6

ShahCh08v3.qxd 4/16/04 11:57 AM Page 185

186 Chap. 8 Subqueries: Nested Queries

SQL> SELECT * FROM worker;

WORKE LAST FIRST
- -
00110
00111
00103
00113
00105
00107

6 rows selected.

SQL> MERGE INTO worker w
2 USING (SELECT StudentId, Last, First
3 FROM student) s
4 ON (s.StudentId = w.WorkerId)
5 WHEN MATCHED THEN
6 UPDATE SET w.Last = s.Last,
7 w.First = s.First
8 WHEN NOT MATCHED THEN
9 INSERT (w.WorkerId, w.Last, W.First)

10 VALUES (s.StudentId, s.Last, s.First)
11 /

6 rows merged.

SQL> SELECT * FROM worker;

WORKE LAST FIRST
- -
00110
00111
00103 Rickles Deborah
00113
00105 Khan Amir
00107
00102 Patel Rajesh
00100 Diaz Jose
00104 Lee Brian
00101 Tyler Mickey

10 rows selected.

Figure 8-16 MERGE statement in action.

EXISTS and NOT EXISTS Operators

The EXISTS and NOT EXISTS operators are used with correlated queries. The
EXISTS operator checks if the inner query returns at least one row. It returns

ShahCh08v3.qxd 4/16/04 11:57 AM Page 186

Correlated Subquery 187

TRUE or FALSE. The column names in the inner query have no significance. You
can use any single character literal, such as A, 1, z, and so on.

In Figure 8-18, the EXISTS operator checks if a row from the FACULTY table
(outer query) is returned at least once by the STUDENT table (inner query). The
result includes all faculty members who are in the STUDENT table.

SQL> SELECT EmployeeId, Salary, DeptId
2 FROM employee outer
3 WHERE Salary =
4 (SELECT MAX(Salary)
5 FROM employee
6 WHERE DeptId = outer.DeptId
7 GROUP BY DeptId);

EMPLOYEEID SALARY DEPTID
- -

111 265000 10
246 150000 40
543 80000 20
135 45000 30

SQL>

Figure 8-17 Correlated subquery.

SQL> SELECT FacultyId, Name
2 FROM faculty outer
3 WHERE EXISTS
4 (SELECT ’1’
5 FROM student
6 WHERE FacultyId = outer.FacultyId);

FACULTYID NAME
- -

111 Jones
222 Williams
123 Mobley
345 Sen
555 Chang

SQL>

Figure 8-18 EXISTS operator.

In Figure 8-19, the NOT EXISTS operator is the opposite of the EXISTS op-
erator. It checks if the inner query does not return a row. In other words, it returns
faculty members who are not in the STUDENT table.

ShahCh08v3.qxd 4/16/04 11:57 AM Page 187

188 Chap. 8 Subqueries: Nested Queries

IN A NUTSHELL . . .

� Subqueries are also known as nested queries. In a nested query, the inner
query is executed first. The output from the inner query is then used by the
outer query.

� A single-row subquery returns one row of data, whereas a multiple-row sub-
query returns more than one row of data.

� A single-row subquery may use relational operators, but multiple-row sub-
query may use IN, ANY (or SOME), and ALL operators in conjunction
with relational operators.

� The inner query in the subquery is enclosed within parentheses, and it can-
not use the ORDER BY clause.

� A subquery may be nested to multiple levels.
� A subquery can be used with the SELECT statement. It can also be used

with CREATE to create a table and populate it with rows in another table.
� A subquery is also used with INSERT, DELETE, and UPDATE data manip-

ulation queries.
� The multiple-row subqueries use the special operators IN,ALL, SOME, and

ANY.
� Top-N analysis is used to sort rows in ascending or descending order and

then to find the Top-N rows for the N highest or lowest values. The inline
view is used for a Top-N analysis.

� A MERGE statement performs the INSERT and UPDATE operation to-
gether.

� In a correlated subquery, the inner query references a column in the outer
query.

� EXISTS and NOT EXISTS are special operators used in correlated subqueries.

SQL> SELECT FacultyId, Name
2 FROM faculty outer
3 WHERE NOT EXISTS
4 (SELECT ’1’
5 FROM student
6 WHERE FacultyId = outer.FacultyId);

FACULTYID NAME
- -

235 Vajpayee
444 Rivera
333 Collins

SQL>

Figure 8-19 NOT EXISTS operator.

ShahCh08v3.qxd 4/16/04 11:57 AM Page 188

Chap. 8 Lab Activity 189

EXERCISE QUESTIONS

True/False:
1. An inner subquery may not use the ORDER BY clause.
2. The inner subquery does not have to be a SELECT statement.
3. A subquery may not be nested to more than three levels.
4. Operators ANY and SOME are the same.
5. operator does not return any rows in most cases.
6. Top-N analysis uses ROWID attribute for row numbers.
7. An inline view may use the ORDER BY clause.
8. In correlated subqueries, the inner query can reference a column from the outer query.
9. means IN.

10. means greater than the minimum value.
11. A table can be created with a subquery and an INSERT statement.
12. A table can be created based on another table with a subquery.
13. When a table is created with a subquery, it inherits all constraints from the original table.

Define the Following Terms, and Give One Example of Each:
1. Single-row subquery.
2. Multiple-row subquery.
3. Inline view.
4. Top-N query.
5. Correlated subquery.

Answer the Following Questions:
1. State the various uses of a subquery.
2. In which situations would you use a three-level subquery?
3. What constraints are transferred to the newly created table with a subquery?
4. How does a Top-N query work?
5. What is the use of the INSERT ALL and INSERT FIRST statements?
6. Why is the MERGE statement useful?
7. A subquery returns three values: 35000, 45000, and 55000. The outer query has a condition

that tests a value of 40000 against these values. If the or
operator is used, when will the value 40000 satisfy the condition? Use each oper-

ator separately.

LAB ACTIVITY

1. Use the N2 Corporation database tables to design the following subqueries. (Use the
spooling method to capture all queries and results in the CHAP8SP1.LST file.)
(a) Display employee Jinku Shaw’s department name.
(b) Find the name of the supervisor for employee number 433.

6 7ALL
=ANY, 7ANY, 6ALL, 7ALL,

7ALL
= ANY

The = ALL

ShahCh08v3.qxd 4/16/04 11:57 AM Page 189

190 Chap. 8 Subqueries: Nested Queries

(c) Who has the same qualification as Stanley Garner?
(d) Which department has more employees than Department 20?
(e) Which employees have been working in the company longer than Larry Houston?
(f) Find all employees in the Sales Department by using a nested query.
(g) Create a new table, EMP30, and populate it with employees in Department 30 by

using an existing table and a subquery. Use EmployeeId, Lname, Fname, HireDate,
and Salary columns.

(h) Add more rows to the EMP30 table with employees in Department 40. Do not trans-
fer the employee’s salary.

(i) Update the salary of newly transferred employees from the EMPLOYEE table to
the EMP30 table with a MERGE statement, and INSERT employees who are not in
the EMP30 table.

(j) Find employees with the minimum salary in their own department with the use of a
correlated subquery.

(k) Use a multiple-level subquery to display dependent information for employees who
belong to the FINANCE department.

(l) Use set operator and subquery to find employees who do not have any dependents.
(m) Write a subquery that finds the average salary by each department. Check to find if

employee 543’s salary satisfies or con-
dition against those departmental average salaries.

2. Use the IU College database tables to design the following subqueries. (Use the spool-
ing method to capture all queries and results in the CHAP8SP2.LST file)
(a) Display student Jose Diaz’s faculty advisor’s name and phone number.
(b) Find the rooms with the bottom-two capacities. Do not include office rooms.
(c) Find the Spring 2003 course sections with the top-three maximum count numbers.
(d) Find all information regarding classrooms
(e) Create a new table, SP03SECT, for Spring 2003 semester course sections by using a

subquery. Include CourseId, Section, FacultyId, and RoomId columns only.
(f) Delete rows from the SP03SECT table for faculty member Mobley.
(g) Find faculty members who do not teach any course in the Spring 2003 semester. Use

a correlated subquery with a NOT EXISTS operator on the SP03SECT table.

1RoomType = ‘C’2.

7ALLthe =ANY, 6ANY, 7ANY, 6ALL,

ShahCh08v3.qxd 4/16/04 11:57 AM Page 190

9

Advanced Features:

Objects, Transactions,

and Data Control

IN THIS CHAPTER . . .

� You will learn about various Oracle objects.
� You will use syntax to create, use, modify, and remove views, sequences, syn-

onyms, and indexes.
� Advantages of transaction control are discussed.
� Users, roles, and privileges for data control are covered.

You have learned to create, modify, remove, use, and manipulate an Oracle object
called a table. In this chapter, you will learn about other objects, such as the view, se-
quence, synonym, and index. Some of these objects are based on underlying Oracle
tables, and some are independent objects. In this chapter, you will also learn about
transactions and their advantages.You will be able to grant and revoke privileges re-
garding your own objects to other users.

VIEWS

A view is an Oracle object that gives the user a logical view of data from an under-
lying table or tables. You can restrict what users can view by allowing them to see
only a few columns from a table. When a view is created from more than one table,
the user can view data from the view without using join conditions and complex

ShahCh09v3.qxd 4/16/04 11:58 AM Page 191

192 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

conditions. The application programs can access data with data independence. The
same data can be viewed differently with different views. Views also hide the names
of the underlying tables, so the user does not know where the data came from. In
short, a view is a logical representation of a subset of data from one or more tables.
A view is stored as a SELECT statement in the Data Dictionary. There are two
types of views: simple and complex.

Figure 9-1 shows the difference between simple and complex views. A simple
view is based on one table. It does not contain group functions or grouped data, and
data manipulation is always possible through it. On the other hand, a complex view
is based on one or more tables. It may contain group functions and/or grouped data,
and data manipulation is not always possible through it.

Creating a View

The general syntax is

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW viewname
[column aliases]
AS SELECT-subquery
[WITH CHECK OPTION [CONSTRAINT constraintname]]
[WITH READ ONLY];

A view is created with a SELECT subquery. The subquery cannot use an ORDER
BY clause, but a view can.

In the syntax, OR REPLACE replaces an existing view with the same name, if
it already exists.The FORCE option creates a view even if the underlying table does
not yet exist. The default is NOFORCE, which does not create a view if the under-
lying table does not exist. The column aliases are used for the columns selected by
the subquery. The number of aliases must match the number of columns selected by
the subquery. The SELECT subquery can use all clauses except the ORDER BY
clause. The WITH CHECK OPTION applies to the WHERE clause condition in
the subquery. It allows insertion and updating of rows based on the condition that
satisfies the view. The CHECK OPTION can also be given an optional constraint

Figure 9-1 Types of views.

Simple View Complex View

It is based on one table. It is based on one or more tables.

It does not contain group functions. It may contain group functions.

It does not contain grouped data. It may contain grouped data.

Data manipulation is always possible. Data manipulation is not always possible.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 192

Views 193

name. The WITH READ ONLY option is to make sure that the data in the under-
lying table are not changed through the view.

Figure 9-2 shows creation of a simple view. View STU500_VU is based on the
STUDENT table for students with The column aliases are given for allMajorId = 500.

four columns selected by the subquery. The user with access to the view can use it like
any other table. The user does not even have to know the existence of the STUDENT
table and other columns in it. The user only sees what you let him or her see! Now,
Figure 9-3 shows use of the newly created view like a table with DESCRIBE and
SELECT.

In Figure 9-4, you will see a complex view that is created from two tables, EM-
PLOYEE and DEPT. It uses group functions and derived data. It is not possible to

Figure 9-2 Creating a simple view.

SQL> CREATE VIEW stud500_vu
2 (StuId, LastName, FirstName, Advisor, MajNum)
3 AS SELECT StudentId, Last, First, FacultyId, MajorId
4 FROM student
5 WHERE MajorId = 500
6 WITH CHECK OPTION;

View created.

SQL>

Figure 9-3 Using a view like a table.

SQL> set linesize 50
SQL> DESCRIBE stu500_vu
Name Null? Type
- -
STUID NOT NULL CHAR(5)
LASTNAME NOT NULL VARCHAR2(15)
FIRSTNAME NOT NULL VARCHAR2(15)
ADVISOR NUMBER(3)
MAJNUM NUMBER(3)

SQL> set linesize 100
SQL> SELECT *

2 FROM stu500_vu;

STUID LASTNAME FIRSTNAME ADVISOR MAJNUM
-
00101 Tyler Mickey 555 500
00103 Rickles Deborah 555 500

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 193

194 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

modify data through this view. Notice that the column aliases are given by the sub-
query, not by the outer CREATE VIEW statement. If a view by the name
DEPT_SAL_VU already existed, this statement would have overwritten the previous
view because of the CREATE OR REPLACE VIEW statement.

Other rules related to data manipulation on a view include:

� No data manipulation on derived columns, such as Salary/12 or
(Commission, 0).

� No data manipulation on the ROWNUM pseudocolumn.
� No insertion of a new row into the table if the base table contains columns

with the NOT NULL constraint but are not selected by the view.
� No insertion of rows into the table if derived columns exist in the view.

Figure 9-2 has a simple view with a WITH CHECK OPTION clause. It applies to
the WHERE condition in the subquery.The user cannot change the MajNum, because
the view accesses rows with The UPDATE of MajNum to any
other value will result in the following error message (see Fig. 9-5):

ORA-01402: view WITH CHECK OPTION where-clause violation.

Similarly, data manipulation on a view having a WITH READ ONLY clause
results in an Oracle server error.

A user can list the names of views under his or her ownership by using

SELECT view_name FROM user_views;

MajorId = 500 only.

+ NVL
Salary

Figure 9-4 Creating and using a complex view.

SQL> CREATE OR REPLACE FORCE VIEW dept_sal_vu
2 AS
3 SELECT d.DeptName DEPARTMENT, MIN(e.Salary) LOWEST,
4 MAX(e.Salary) HIGHEST, AVG(e.Salary) AVERAGE
5 FROM employee e, dept d
6 WHERE e.DeptId = d. DeptId
7 GROUP BY d.DeptName;

View created.

SQL> SELECT * FROM dept_sal_vu;

DEPARTMENT LOWEST HIGHEST AVERAGE
- -
Finance 35000 265000 125000
InfoSys 66500 80000 73250
Marketing 150000 150000 150000
Sales 24500 45000 34750

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 194

Views 195

Removing a View

A user who owns a view—or who has the privilege to remove it—can remove a view.
The removal of a view does not affect data in the underlying table.When a view is re-
moved, a “View dropped” message is displayed (see Fig. 9-6). The general syntax is

DROP VIEW viewname;

For example,

DROP VIEW stuvu500;

Altering a View

When you alter an underlying table, the view becomes invalid.You need to recompile
that view to make it valid again. The ALTER VIEW statement is used for the re-
compilation of a view. For example,

ALTER VIEW deptsalvu COMPILE;

The same statement is used to check validity of a view in case the underlying table is
dropped.

Figure 9-5 WITH CHECK OPTION where-clause violation.

SQL> update stu500_vu
2 set MajNum = 600;

update stu500_vu
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

SQL>

Figure 9-6 Listing and dropping view.

SQL> SELECT VIEW_NAME FROM USER_VIEWS;

VIEW_NAME
-
DEPTSALVU
DEPT_SAL_VU
STU500_VU

SQL> DROP VIEW deptsalvu;

View dropped.

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 195

196 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

With Oracle9i, the ALTER VIEW statement lets you add constraints to a view.
You can use clauses like MODIFY CONSTRAINT and DROP CONSTRAINT.

SEQUENCES

A sequence is an Oracle object that is used to generate a sequence of numbers. Many
times, you create a table with a surrogate key column, such as StudentId, FacultyId, or
EmployeeId.These columns have a numeric data type. Sequencing is a perfect solution
for generating values for such numeric columns. These values can be unique or recy-
cled again, depending on the column. If a sequence is used for a primary key column,
however, the values must be unique! A sequence is not limited to the primary key
columns but can be used on any numeric column.The general syntax is

CREATE SEQUENCE sequencename
[INCREMENT BY n]
[START WITH s]
[MAXVALUE x | NOMAXVALUE]
[MINVALUE m | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE c | NOCACHE]
[ORDER | NOORDER];

In this syntax, note the following:

INCREMENT BY n The increment value for the number generation is n.
The default increment is 1.

START WITH s The starting value for the sequence is s.
The default start value is 1.

MAXVALUE x The maximum value for the generated number is x.
NOMAXVALUE The sequence will keep generating until the maximum

allowable value is generated in ascending
order.
NOMAXVALUE is for a sequence in descending
order (default).

MINVALUE m The minimum value for the generated number is m.
NOMINVALUE The minimum value is 1 for a sequence in ascending

order and for a sequence in descending order
(default).

CYCLE The sequence continues generating after reaching the
maximum or minimum value.

NOCYCLE No more generation after maximum or minimum
value is reached (default).

CACHE c The Oracle server generates numbers in advance and

-1026

-1

11 # 10272

ShahCh09v3.qxd 4/16/04 11:58 AM Page 196

Sequences 197

stores them in a cache memory area for improved sys-
tem performance. The default value for c is 20. If the
user provides a number, the server will store that
many numbers in the cache memory.

NOCACHE The server does not store any sequence numbers in
memory in advance.

ORDER The numbers are generated in chronological order.
NOORDER The numbers are not generated in chronological order.

Suppose you want to create a sequence to generate EmployeeId values in the
EMPLOYEE table. The last EmployeeId in the table is 543. So, you want to start at
544, and the numbers will be incremented by 1 for every new employee (see Fig. 9-7).

Let us create another sequence to generate MajorId numbers. If you view the
MAJOR table, the last value used is 600, and each value is in steps of 100. In the future,
you want to add numbers in steps of 10, starting with 610.The data type of the column
is NUMBER(3), so the maximum allowable value should be 999 (see Fig. 9-8).

Figure 9-7 Sequence.

SQL> CREATE SEQUENCE employee_employeeid_seq
2 INCREMENT BY 1
3 START WITH 544
4 MAXVALUE 999
5 NOCACHE;

Sequence created.

SQL>

Figure 9-8 Sequence—creation and use with NEXTVAL.

SQL> CREATE SEQUENCE major_majorid_seq
2 INCREMENT BY 10
3 START WITH 610
4 MAXVALUE 999
5 NOCACHE;

Sequence created.

SQL> INSERT INTO major VALUES
2 (major_majorid_seq.NEXTVAL, ’MS - Computer Science’);

1 row created.

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 197

198 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

There are pseudocolumns named CURRVAL and NEXTVAL to reference se-
quence values. The NEXTVAL column returns the next available number in the se-
quence. The CURRVAL column gives the current sequence value. The NEXTVAL
column is used with the sequence name (e.g. sequencename.NEXTVAL) to generate
the next sequence number.When the new sequence number is generated, the current
number is stored in the CURRVAL column. NEXTVAL must be used at least once
to get the value from CURRVAL.

Because the sequence major_majorid_seq is used for the first time in Figure 9-8,
the first value generated is the starting value defined for the sequence.The new major
will get value 610.You can check it with the pseudocolumn CURRVAL with Oracle’s
dummy table DUAL. For example,

SELECT major_majorid_seq.CURRVAL FROM dual;

The number returned by CURRVAL is 610, which is the last value generated by
NEXTVAL.

The employee_employeeid_seq sequence is created in Figure 9-7, but it is not
used yet. If you try to find the current value, you will get an error message. Create a
new sequence named employee_employeeid_seq, and then use the following state-
ment to see the error message:

SELECT employee_EmployeeId_seq.CURRVAL FROM dual;

The query will result in an error message, because CURRVAL does not have a
value yet and it is not defined.

Figure 9-9 uses the dept_deptid_seq sequence first to add a new department in
the DEPT table with NEXTVAL. Then, a new row is added to the EMPLOYEE
table, generating a new EmployeeId with employee_employeeid_seq.NEXTVAL

Figure 9-9 Sequence—NEXTVAL and CURRVAL.

SQL> CREATE SEQUENCE dept_deptid_seq
2 START WITH 90
3 INCREMENT BY 1;

Sequence created.

SQL> INSERT INTO DEPT VALUES
2 (dept_deptid_seq.NEXTVAL, ’IT’, ’BRONX’, 111);

1 row created.

SQL> INSERT INTO employee (EmployeeId,Lname,Fname,DeptId)
2 VALUES (employee_employeeid_seq.NEXTVAL,
3 ’Viquez’, ’Heillyn’, dept_deptid_seq.CURRVAL);

1 row created.

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 198

Sequences 199

and using the newly created department’s value for the employee’s DeptId with
dept_deptid_seq.CURRVAL.

When you create a sequence and specify an increment value, you still may find
gaps in the values generated. The gaps result from one of the following reasons:

� You generated sequence values in an INSERT statement, and the row was
never written to the permanent database because of “rollback”.

� You used the CACHE option, and the system crashed. So, the numbers
brought to memory in advance are lost.

� A sequence is used in more than one table or on more than one column.
� Rows are deleted from a table.

You can get information about sequences you have created by using the query
shown in Figure 9-10. The LAST_NUMBER column shows the next available num-
ber, and the other columns show values set at the time of creation of sequences.

Modifying a Sequence

You can modify a sequence if you own it or have the ALTER SEQUENCE privilege.
The modified sequence does not affect past numbers, only numbers generated in the
future. Modification of a sequence does not allow you to change the START WITH
option. The sequence has to be removed and recreated to change the starting value.
The maximum value cannot be set to a number less than the current number. You
can change the INCREMENT BY, MAXVALUE NOMAXVALUE, MINVAL-
UE NOMINVALUE,CYCLE NOCYCLE,ORDER NOORDER,andCACHE NO-
CACHE options while modifying a sequence.The general syntax is

ALTER SEQUENCE sequencename
[INCREMENT BY n]
[MAXVALUE x | NOMAXVALUE]
[MINVALUE m | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE c | NOCACHE]
[ORDER | NOORDER];

ƒƒƒƒ
ƒ

Figure 9-10 USER_SEQUENCES.

SQL> SELECT sequence_name, last_number,
2 max_value, min_value, increment_by
3 FROM user_sequences;

SEQUENCE_NAME LAST_NUMBER MAX_VALUE MIN_VALUE INCREMENT_BY
-
DEPT_DEPTID_SEQ 110 1.0000E+27 1 1
EMPLOYEE_EMPLOYEEID_SEQ 545 999 1 1
MAJOR_MAJORID_SEQ 620 999 1 10

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 199

200 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

For example, look at the sequence modification in Figure 9-11. Only two options are
changed for simplicity. A user may choose to modify more options.

Dropping a Sequence

You can drop a sequence with the DROP SEQUENCE statement. A removed se-
quence cannot be used anymore. For example,

DROP SEQUENCE major_MajorId_seq;

SYNONYMS

Sometimes, object names are very long. If a query uses the object’s name more than
once, the user has to type that long name many times. You already know the use of
table aliases to shorten table names. Table aliases are, indeed, useful, but they are
only known in the query where they are created. They are not stored as separate ob-
jects in your database. Synonyms are Oracle objects that are used to create alterna-
tive names for tables, views, sequences, and other objects. Even when you have the
privilege to use another user’s table, you have to qualify the table name with the
user’s name.You can create a synonym for username.tablename. The general syntax is

CREATE [PUBLIC] SYNONYM SynonymName
For ObjectName;

Figure 9-11 Alter Sequence.

SQL> ALTER SEQUENCE major_majorid_seq
2 INCREMENT BY 50
3 MAXVALUE 999;

Sequence altered.

SQL>

Figure 9-12 Creating synonym.

SQL> CREATE SYNONYM esq
2 FOR employee_employeeid_seq;

Synonym created.

SQL> CREATE SYNONYM emp
2 FOR employee;

Synonym created.

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 200

Synonyms 201

A synonym name must be different than all the other objects owned by the
user. For example, Figure 9-12 shows the creation of a synonym for a sequence as
well as a table.

If you have rights equivalent to those of a database administrator (DBA), you
can create a PUBLIC synonym. A public synonym is available to all users. I create
PUBLIC synonyms for all sample database tables, because my tables are made
available to students for lab activities. For example,

CREATE PUBLIC SYNONYM reg
FOR nshah.registration;

A short synonym Reg is used for table REGISTRATION owned by user nshah.
With availability of a public synonym, the students do not have to qualify my table
name with my user name. They can use

SELECT * FROM reg;

instead of

SELECT * FROM nshah.registration;

A synonym can be removed by using the DROP SYNONYM statement. Only
the DBA privilege allows you to remove a public synonym. For example,

DROP SYNONYM esq;

Figure 9-13 User_Synonyms.

SQL> SELECT SYNONYM_NAME, TABLE_NAME, TABLE_OWNER
2 FROM USER_SYNONYMS;

SYNONYM_NAME TABLE_NAME TABLE_OWNER
-
EMP EMPLOYEE NSHAH
ESQ EMPLOYEE_EMPLOYEEID_SEQ NSHAH

SQL>

A user can get information about synonyms and their table names by using
Oracle’s Data Dictionary table, USER_SYNONYMS (see Fig. 9-13).

INDEX

An index is another Oracle object that is used for faster retrieval of rows from a
table. An index can be created explicitly by using the CREATE INDEX statement

ShahCh09v3.qxd 4/16/04 11:58 AM Page 201

202 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

or implicitly by Oracle. Once an index exists for a table, the user does not have to
open or use the index with a command or a statement. The Oracle server uses the
index to search for a row rather than scanning through the entire table. Indexing re-
duces both search time and disk input/output. All indexes are maintained separately
from the table on which they are based. Creating and removing an index does not
affect the table at all. When a table is dropped, all indexes based on that table are
also removed.

Implicit indexes are created when the PRIMARY KEY or UNIQUE con-
straint is defined. Such indexes get the name of the constraint. A user can create ex-
plicit indexes based on non–primary key or nonunique columns or on any
combination of columns for faster table access. An index based on a combination of
columns is called a composite index or concatenated index. The general syntax is

CREATE INDEX indexname
ON tablename (columnname1 [, columnname2], . . .);

The TABLESPACE and STORAGE clauses can be used with the CREATE
INDEX statement. Indexes are stored in a different tablespace and, preferably, on a
different physical device from the table data to optimize the index’s performance.
For example, Figure 9-14 creates an index based on student’s last and first names to

speed searching of student information when the search involves the last name and
first name as search key. The information from the USER_INDEXES table shows
two indexes in the STUDENT table, because one index was created automatically
for the primary key constraint.

You would create an index based on a column if a column is used often in
querying or joining, has a big domain of values, or contains many Null values. When
an index is created, it does not store Null values, so the searching would eliminate
those rows. Do not create an index for a very small table, a column not used often in
queries, or a table that often gets updated. Every insertion and deletion in a table

Figure 9-14 Index.

SQL> CREATE INDEX stu_idx
2 ON student(Last, First);

Index created.

SQL> SELECT index_name, table_name FROM user_indexes
2 WHERE table_name = ’STUDENT’;

INDEX_NAME TABLE_NAME
- -
STUDENT_STUDENTID_PK STUDENT
STU_IDX STUDENT

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 202

ROWID Pseudocolumn 203

updates the index, which is added overhead on the system.
Oracle also supports bitmapped indexes, which are used in data warehousing but

are not suitable for tables with a large number of updates. Each data manipulation
statement updates the index file, thus slowing down the data manipulation operation.

Rebuilding an Index

When a table goes through many changes (insertions, deletions, and updates), it is
advisable to rebuild indexes based on that table.You can drop an index and recreate
it, but it is faster to just rebuild an existing index. Rebuilding compacts index data
and improves performance. For example,

ALTER INDEX stu_idx REBUILD;

ROWID PSEUDOCOLUMN

Every row has a unique, system-generated address called the ROWID. This address
contains the exact location of the row, and the index files store ROWID to retrieve
rows.The row address or physical storage location of a row consists of the data object
number, data block number, number of the row within the data block, and data file
number. The ROWID can be used in a query for faster access of a row, but it cannot
be changed. If a row is deleted and then inserted again, it gets a new ROWID, as
shown in Figure 9-15.

Figure 9-15 ROWID Pseudocolumn.

SQL> SELECT ROWID, EmployeeId, Lname, Fname
2 FROM employee
3 WHERE EmployeeId = 200;

ROWID EMPLOYEEID LNAME FNAME
- -
AAAHaCAABAAAMbaAAF 200 Shaw Jinku

SQL> SELECT EmployeeId, Lname, Fname
2 FROM employee
3 WHERE ROWID = ’AAAHaCAABAAAMbaAAF’;

EMPLOYEEID LNAME FNAME
- -

200 Shaw Jinku

SQL>

ShahCh09v3.qxd 4/16/04 11:58 AM Page 203

204 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

TRANSACTIONS

Oracle groups your Structured Query Language (SQL) statements into transactions.
A transaction consists of a series of Data Manipulation Language (DML) statements,
one Data Definition Language (DDL) statement, or one Data Control Language
(DCL) statement. Because transaction control, Oracle guarantees data consistency.
The transaction control statements give you flexibility to undo transactions or write
transactions to the disk. Transactions provide consistency in case of a system failure.

In Oracle, your transactions start with the first executable SQL statement that
you issue. The transaction ends when one of the following occurs:

� A COMMIT or ROLLBACK transaction control statement is used.
� A DDL (CREATE, ALTER, DROP, RENAME, or TRUNCATE) state-

ment is executed (automatic commit).
� A DCL (GRANT or REVOKE) statement is executed (automatic commit).
� A user properly exits (commit).
� The system crashes (rollback).

Once a transaction ends, the new transaction starts with your next executable SQL
statement.

There is also an environment variable AUTOCOMMIT. By default, it is set to
OFF. A user can set it to ON or IMMEDIATE by typing

SET AUTOCOMMIT ON
SET AUTOCOMMIT IMMEDIATE

When AUTOCOMMIT is set to ON or IMMEDIATE, every DML statement
is written to the disk as soon as it is executed, every DML statement is committed
implicitly, and no rollback occurs with AUTOCOMMIT. AUTOCOMMIT can be
toggled back to OFF for an explicit COMMIT. If the system crashes, any statements
after the last COMMIT are rolled back, so partial changes to tables are not perma-
nently written.

When a user is in the middle of a transaction, he or she can review the results
of all DML statements by using SELECT queries. After reviewing the results, the
user can decide to roll back or commit. The user is getting results from the data-
base’s temporary storage area. The other users with privileges on the same table
cannot view the results of the DML queries until the user commits the changes.
Until the user commits all the changes, the rows with DML statements are locked.
Other users cannot change the data in the locked rows. By committing, the user
changes become permanent, all users can view the changes, locks are released, save
points are removed, and other users can manipulate affected rows.

In Figure 9-16, you see actions performed by three transaction control state-
ments; COMMIT, SAVEPOINT, and ROLLBACK. In Figure 9-17, you see illustration

ShahCh09v3.qxd 4/16/04 11:58 AM Page 204

Transactions 205

Transaction Control Statement Action

COMMIT Ends the current transaction, and writes all
changes permanently to the disk.

SAVEPOINT n Marks a point in the current transaction.
ROLLBACK [TO SAVEPOINT n] Ends the current transaction by undoing all

changes to the last commit if a TO SAVEPOINT
clause is not used. It rolls back to the save point if
the clause is used, removing the save point and
any changes after the save point, but it does not
end the transaction.

Figure 9-16 Transaction control statements.

SQL> INSERT INTO course VALUES (’CIS395’, ’ADV DATABASE’, 3, ’CIS253’);

1 row created.

SQL> INSERT INTO course VALUES (’CIS340’, ’OBJ ANALYSIS’, 3, ’CIS265’);

1 row created.

SQL> SAVEPOINT X;

Savepoint created.

SQL> UPDATE course SET credits=4 WHERE CourseId=’CIS340’;

1 row updated.

SQL> DELETE FROM course WHERE CourseId=’CIS395’;

1 row deleted.

SQL> SAVEPOINT Y;

Savepoint created.

SQL> INSERT INTO course VALUES(’BL101’, ’BUSINESS LAW’, 3, ”);

1 row created.

SQL> ROLLBACK TO SAVEPOINT Y;

Rollback complete.

SQL> ROLLBACK TO SAVEPOINT X;

Rollback complete.

SQL> ROLLBACK;

Rollback complete.

Figure 9-17 SAVEPOINT and ROLLBACK.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 205

206 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

of a transaction with five DML statements. The transaction has started right after
the some COMMIT statement and the user is at the end of the fifth DML state-
ment. If user types COMMIT, the results of all five DML statements are written
permanently to the disk. If the user types ROLLBACK TO SAVEPOINT Y, one
INSERT after SAVEPOINT Y is rolled back, and save point Y is removed. If the
user types ROLLBACK TO SAVEPOINT X, save point Y is removed along with
save point X. Three DML statements—UPDATE, DELETE, and INSERT—are
rolled back. If the user types ROLLBACK, the entire transaction is rolled back, all
save points are removed, and a new transaction begins with the new statement. In
Figure 9-17, one by one the save points are rolled back, and eventually, the entire
transaction is rolled back. Back to square one!

� Question: If you typed a DML statement that failed during execution, is it
still part of your transaction? Is it committed? Is it rolled back?

� Answer: The statement is rolled back, and it is no longer part of your trans-
action.

Read Consistency and Locking

Oracle implements read consistency. When any DML statement is issued for a data-
base, the old copy of the database (before changes) is written into a rollback segment.
The user who is making changes with DML statements can see the changes with a SE-
LECT query from the database. All other users see the snapshot of the database be-
fore changes in the rollback segment. The data are consistent to all other users. When
the changes are committed, the changes are available to all users, because the rollback
segment copy is removed and the space is freed for another, later use. If the changes
are rolled back, the old copy of the database is loaded into the rollback segment again.

A user does not have to write any explicit statements to lock tables. Oracle uses
automatic locking with the least restrictions to provide sharing of data with integrity.
Oracle has two lock classes; exclusive and share lock. An exclusive lock prevents
sharing a resource until the lock is released. A share lock allows sharing for reading
purposes. Oracle also allows a manual lock on data.

LOCKING ROWS FOR UPDATE

When a user issues a SELECT query, rows are not locked. Oracle does not lock
rows for viewing. As you know, the rows with DML query changes are locked until
changes are committed. Suppose you want to view rows and also change them. You
would want to lock those rows for future changes. You would use the SELECT
FOR UPDATE OF statement for such manual locks. The general syntax is

SELECT columnnames
FROM tablenames

Á

ShahCh09v3.qxd 4/16/04 11:58 AM Page 206

Controlling Access 207

[WHERE condition]
FOR UPDATE OF columnnames
[NOWAIT];

The use of columnnames in FOR UPDATE OF does not mean that the locking
is at the column level. The entire row is locked. The column names are used just for
information. The NOWAIT clause, which tells the user instantaneously if another
user has already locked the row, is optional. If you do not use NOWAIT in the state-
ment, you will have to wait for any rows that have been locked by other applications
to be released. You will not be able to do any processing on those rows until then.

Figure 9-18 shows the display of a row in the EMPLOYEE table and its locking.
Once the row is locked, you can change the employee’s salary and commission. You
can actually change any column’s value in this row. If another user tries to update this
row, he or she will have to wait for you to release the lock by either committing or
rolling back the transaction. It is a good practice to run COMMIT as soon as changes
are done so that other users can access data.

SQL> SELECT Lname, Fname, Salary, Commission
2 FROM employee
3 WHERE EmployeeId = 544
4 FOR UPDATE OF Salary, Commission
5 NOWAIT;

LNAME FNAME SALARY COMMISSION
- -
Viquez Heillyn

SQL>

Figure 9-18 Locking a row with FOR UPDATE OF.

CONTROLLING ACCESS

A user’s access needs to be controlled in a shared, multiuser Oracle environ-
ment. A user’s access to the database can be restricted, and a user may or may
not be allowed to use certain objects in the database. Security is classified into
two types:

1. System security defines access to the database at the system level. It is imple-
mented by assigning a username and password, allocating disk space, and
providing a user with the ability to perform system operations.

2. Database security defines a user’s access to various objects and the tasks a
user can perform on them.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 207

208 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

The Database Administrator (DBA) is the most trusted user, and a DBA has
all the privileges. A DBA can create users, assign them privileges, and even drop
users.

Users and Roles

The DBA can create a user with the CREATE USER statement. Once a user is cre-
ated and a password assigned, the user needs privileges to do anything. The general
syntax is

CREATE USER username[PROFILE profilename]
IDENTIFIED BY password
[DEFAULT TABLESPACE tablespacename]
[TEMPORARY TABLESPACE tablespacename]
[PASSWORD EXPIRE] [ACCOUNT UNLOCK];

The statement in Figure 9-19 creates a user XMAN, assigns a password as well
as temporary and default tablespaces, and grants roles. A user needs, at minimum,
two roles; CONNECT and RESOURCE.

SQL> CREATE USER “XMAN” PROFILE “DEFAULT”
2 IDENTIFIED BY “CRICKET”
3 DEFAULT TABLESPACE “CIS_DATA”
4 TEMPORARY TABLESPACE “TEMP_DATA”
5 ACCOUNT UNLOCK;

User created.

SQL> GRANT UNLIMITED TABLESPACE TO “XMAN”;

Grant succeeded.

SQL> GRANT “CONNECT” TO “XMAN”;

Grant succeeded.

SQL> GRANT “RESOURCE” TO “XMAN”;

Grant succeeded.

SQL>

Figure 9-19 Creating a new user.

A user can change his/her own password with the PASSWORD command in
A DBA can change any user’s password with the ALTER USER state-

ment. For example,

ALTER USER “XMAN” IDENTIFIED BY “PATRICK”;

There is a pool of more than 100 system privileges available for the DBA to grant
to users. The DBA assigns privileges based on the level of a user or on a user’s needs.

SQL * Plus.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 208

Controlling Access 209

In a company, there are many users of different levels. Many of them from the
same level need the same privileges. It is easier to assign privileges to each level and
then to assign users to that level.The levels are called roles. A role is similar to a group
used by network operating systems. A DBA creates a role by using a CREATE
ROLE statement. Privileges are then granted to the role, and the role is granted to
the users. The general syntax is

GRANT privileges | role
TO username1 [, username2 . . .];

Figure 9-19 shows the roles assigned to user XMAN. Once user XMAN gets
privileges directly or through a role to go with the username and password, he or she
can use those privileges immediately. Some users can be assigned more or fewer
privileges than other users.

Object Privileges

An object privilege specifies what a user can do with a database object, such as a
table, a sequence, or a view. There are 11 basic object privileges, and each object has
a set of privileges out of the total of 11 privileges. The following is a list of all object
privileges on various objects (objects are listed within parentheses):

� ALTER (table, sequence)
� INSERT (table, view)
� UPDATE (table, view)
� DELETE (table, view)
� SELECT (table, view, sequence)
� REFERENCES (table, view)
� INDEX (table)
� EXECUTE (procedure, function, package, library, user-defined type)
� UNDER (view, user-defined type)
� READ (directory)
� WRITE (directory)

UNDER is a new object privilege introduced with Oracle9i. It lets you create
a subview under the current view. You can grant this object privilege only if you
have the UNDER ANY VIEW privilege WITH GRANT OPTION on the immediate
superview of this subview.

A user has his or her objects in his or her own schema.An owner has all possible
privileges on the owner’s objects. A user can grant privileges on objects from his or
her own schema to other users or roles. The grantee can also be given further rights
to grant the same privileges to other users on an object. The general syntax is

GRANT objectprivileges [(columnnames)] | ALL
ON objectname

ShahCh09v3.qxd 4/16/04 11:58 AM Page 209

210 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

TO user|role|PUBLIC
[WITH GRANT OPTION];

where objectprivileges are some of the 11 privileges listed before. If all privileges are
to be granted, ALL can be used instead of specifying each privilege separately.
Columns on which privileges are granted are specified by columnnames. The key
word PUBLIC grants privileges to all users. The WITH GRANT OPTION clause
allows the grantee to grant privileges to other users and roles.

Figure 9-20 illustrates two GRANT statements.The first statement gives only SE-
LECT privileges on table DEPT to user XMAN.The second statement gives SELECT,
INSERT, and UPDATE privileges on table EMPLOYEE to two users, STUDENT and
XMAN.The second statement also gives the two users privilege to pass those privileges
to other users. If user NSHAH is granting these privileges, the grantee will have to qual-
ify the table name with a username to use it (e.g., NSHAH.EMPLOYEE).

The user XMAN can use table EMPLOYEE with the following query:

SELECT * FROM nshah.employee;

Another approach is to create a synonym for the table, as you saw earlier in
this chapter. For example,

CREATE SYNONYM emp FOR nshah.employee;

Privileges can be granted, and they can be taken away. If a user granted privi-
leges by a WITH GRANT OPTION to another user and that second user passed on
those privileges, the REVOKE statement takes privileges not only from the grantee
but also from the users granted privileges by the grantee. The general syntax is

REVOKE privilege1 [, privilege2 . . .] | ALL
ON objectname
FROM users|role|PUBLIC
[CASCADE CONSTRAINTS];

SQL> GRANT SELECT
2 ON dept
3 TO XMAN;

Grant succeeded.

SQL> GRANT SELECT, INSERT, UPDATE
2 ON employee
3 TO STUDENT, XMAN
4 WITH GRANT OPTION;

Grant succeeded.

SQL>

Figure 9-20 Granting object privileges.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 210

Controlling Access 211

The user with the REFERENCES privilege in the GRANT statement can refer-
ence the table. CASCADE CONSTRAINTS removes any foreign key or referential
integrity constraints on the object.

In Figure 9-21, user XMAN loses ALL granted privileges on granted the EM-
PLOYEE table from user NSHAH. If user XMAN has passed privileges on the
EMPLOYEE table to any other users, their privileges are also revoked.

Figure 9-22 shows a table with object privileges, which can be granted on vari-
ous Oracle objects. Some objects, such as operator, indextype, and so on, are not in-
cluded in this table, because they are beyond the scope of this text. You may grant
the EXECUTE privilege to Java source, class, or resource created in Oracle with the
CREATE JAVA statement. Oracle treats Java objects as procedures.

SQL> REVOKE ALL
2 ON employee
3 FROM XMAN;

Revoke succeeded.

SQL>

Figure 9-21 Revoking object privileges.

Procedures,
Functions, User-Defined

Object Privilege Table View Sequence and Packages Directory Library Type

ALTER X X

DELETE X X

EXECUTE X X X

INDEX X

INSERT X X

ON COMMIT
REFRESH X

QUERY REWRITE X

READ X

REFERENCES X X

SELECT X X X

UNDER X X

UPDATE X X

WRITE X

Figure 9-22 Object privileges and Oracle objects.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 211

212 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

IN A NUTSHELL . . .

� The Oracle objects view, sequence, index, and synonym are stored in a user’s
schema.

� A view has two types: simple and complex.
� A simple view is based on a single table and does not contain function or

grouped data. The manipulation of data is always possible from a simple
view.

� A complex view is based on one or more tables and may contain functions
and grouped data. Manipulation of data is not always possible from a com-
plex view.

� A sequence is an Oracle object that is used to generate a sequence of num-
bers. The sequence number may start at any number and have any incre-
ment value, either in chronological order or unordered.

� A sequence object can be modified with some restrictions. A gap may occur
in sequence values because of a system crash, a deletion of rows, an update
operation, or the use of a sequence on more than one column.

� A synonym is used to provide a shortened name for an object.
� Oracle automatically creates an index object for all primary key and unique

constraints. A user can create an index based on a set of columns for faster
access.

� Transactions in Oracle provide the user with more flexibility and consisten-
cy in data. A user can employ COMMIT or ROLLBACK transactions.

� Oracle provides read consistency and automatic locking. A user can manu-
ally lock rows for updating with the FOR UPDATE OF clause.

� A database administrator (DBA) has all privileges.There are more than 100
system privileges and 11 object privileges. The DBA creates users and roles,
and he or she grants them privileges.

� A user can grant privileges to other users on any object in the user’s own
schema and can also revoke those privileges.

EXERCISE QUESTIONS

True/False:
1. A simple view is based on a single table.
2. A complex view is always based on two or more tables.
3. In a sequence, to get the current value with CURRVAL, at least one number must be

generated first by using NEXTVAL.
4. If a table is dropped, all indexes based on that table are automatically dropped.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 212

Lab Activity 213

5. When a system crashes, it results in an automatic COMMIT.
6. DML statements cannot be rolled back once committed.
7. Any user can create another user with the same privileges.
8. A user cannot pass on privileges to other users on objects from his or her own schema

unless the WITH GRANT OPTION is used in a GRANT statement.
9. The SELECT statement generates an automatic lock on rows.

10. When DML statements are not committed, other users cannot modify the rows involved.
11. A sequence can be used only on the one table for which its created.
12. If a user owns a table named EMP, the user cannot have a synonym named EMP.
13. A view is created with WITH CHECK OPTION to prevent modifications to all columns

used in the view.
14. CURRVAL returns the START WITH value of a sequence for a sequence that is created

but is never used to generate a value.
15. When a view is dropped, the underlying table is also dropped.
16. When a table is dropped, the sequence used on that table also is dropped.

Answer the Following Questions:
1. Name any five Oracle objects.
2. What are the differences between simple and complex views?
3. When does an automatic commit occur?
4. What is the advantage of creating the following objects?

a. Index.
b. Sequence.
c. View.
d. Synonym.

5. How is transaction control important in a shared environment?
6. Name Oracle9i’s object privileges. What is used to grant all object privileges? What is

used to grant privileges to everybody?
7. When does an automatic rollback occur?
8. For what are the pseudocolumns ROWID, ROWNUM, NEXTVAL, and CURRVAL used?
9. How can you lock rows in a table with the SELECT query? If another user has already

locked those rows, what will happen if you try to lock them as well? Is there any way to
avoid the situation?

10. When a table is dropped, what happens to its indexes, synonyms, views, and sequences?

LAB ACTIVITY

Use the Case-Study Databases for the Following Queries:
1. Create a view to include all employee information, but hide salary and commission.
2. Create a view to include department name and average salary by department.

ShahCh09v3.qxd 4/16/04 11:58 AM Page 213

214 Chap. 9 Advanced Features: Objects, Transactions, and Data Control

3. Create an index to search students faster based on their major ID.
4. Create a sequence to add room IDs, and then insert a new room into the LOCATION

table using the newly created sequence. What is the CURRVAL after the new row is
inserted?

5. GRANT only the SELECT privilege to another user on your TERM table.
6. INSERT a new Winter 2004 term in the TERM table. Use a SELECT query to see the

result. Ask the user with the SELECT privilege (from activity 5) to view your TERM
table. COMMIT your transaction, and ask the same user to view the table again.

7. Lock student ID 00101 for an update of major to 600. Update the row, and COMMIT.
8. Create a view that will display name, department number, and total income

of each employee in Department 10. Prevent a change of
department through the view.

9. Create a view that will display department names and the sum of all employee income
by department.

10. Create a sequence deptid_seq to generate department Id (in the DEPT table) and another
sequence empid_seq to generate employee Id (in the EMPLOYEE table). Use deptid_seq
to add a new department in the DEPT table. Now, add yourself as a new employee with
empid_seq in the department you just added.

1salary + commission2

ShahCh09v3.qxd 4/16/04 11:58 AM Page 214

SQL Review:

Supplementary Examples

In this section, a new database is introduced with four tables. This review section is
added at this point in the text to review all the statements covered in Chapters 3
through 9. The scripts for creating all four tables and inserting rows into them are
also provided after the illustrations of the tables. Each script is followed by various
problems and their solutions. The four sample tables are:

1. CUSTOMER: A table with customer demographic information.
2. ITEM: A table with information about the items offered by the company.
3. INVOICE: A table with individual invoices produced for customers.
4. INVITEM: A composite entity with invoices and items ordered.

CUSTOMER (CustNo, CustName, State, Phone)

CustNo CustName State Phone

211 Garcia NJ 732-555-1000

212 Parikh NY 212-555-2000

225 Elsenhauer NJ 973-555-3333

239 Bayer FL 407-555-7777

ITEM (ItemNo, ItemName, ItemPrice, QtyOnHand)

ItemNo ItemName ItemPrice QtyOnHand

1 Screw 2.25 50

2 Nut 5.00 110

3 Bolt 3.99 75

4 Hammer 9.99 125

5 Washer 1.99 100

6 Nail 0.99 300

ShahCh09v3.qxd 4/16/04 11:58 AM Page 215

216 SQL Review: Supplementary Examples

SCRIPT FOR CREATION OF TABLES

CREATE TABLE customer(CustNo NUMBER (3),
CustName VARCHAR2(10) CONSTRAINT customer_custname_nn NOT NULL,
State CHAR(2) DEFAULT ‘NJ’,
Phone CHAR(12),
CONSTRAINT customer_custno_pk PRIMARY KEY (CustNo));

CREATE TABLE item(ItemNo NUMBER (2),
ItemName VARCHAR2(6),
ItemPrice NUMBER(3,2),
QtyOnHand NUMBER(3),
CONSTRAINT item_itemno_pk PRIMARY KEY(ItemNo),
CONSTRAINT item_qtyonhand_ck CHECK (QtyOnHand >= 0));

CREATE TABLE invoice(InvNo NUMBER(4),
InvDate DATE,
CustNo NUMBER(3) CONSTRAINT invoice_custno_nn NOT NULL,
CONSTRAINT invoice_invoiceno_pk PRIMARY KEY(InvNo),
CONSTRAINT invoice_custno_fk FOREIGN KEY(CustNo)

REFERENCES customer(CustNo));
CREATE TABLE invitem(InvNo NUMBER(4),

ItemNo NUMBER(2),

INVOICE (InvNo, InvDate, CustNo)

InvNo InvDate CustNo

1001 05-SEP-03 212

1002 17-SEP-03 225

1003 17-SEP-03 239

1004 18-SEP-03 211

1005 21-SEP-03 212

INVITEM (InvNo, ItemNo, Qty)

InvNo ItemNo Qty

1001 1 5

1001 3 5

1001 5 9

1002 1 2

1002 2 3

1003 1 7

1003 2 1

1004 4 5

1005 4 10

ShahCh09v3.qxd 4/16/04 11:58 AM Page 216

SQL Review: Supplementary Examples 217

Qty NUMBER(2) NOT NULL,
CONSTRAINT invitem_invno_itemno_pk PRIMARY KEY(InvNo, ItemNo),
CONSTRAINT invitem_invno_fk FOREIGN KEY(InvNo)

REFERENCES invoice(InvNo),
CONSTRAINT invitem_itemno_fk FOREIGN KEY(ItemNo)

REFERENCES item(ItemNo));

SCRIPT FOR INSERTION OF ROWS INTO TABLES

INSERT INTO customer VALUES(211, ‘Garcia’, ‘NJ’, ‘732-555-1000’);
INSERT INTO customer VALUES(212, ‘Parikh’, ‘NY’, ‘212-555-2000’);
INSERT INTO customer VALUES(225, ‘Eisenhauer’, ‘NJ’, ‘973-555-3333’);
INSERT INTO customer VALUES(239, ‘Bayer’, ‘FL’, ‘407-555-7777’);

INSERT INTO item VALUES(1, ’Screw’, 2.25, 50);
INSERT INTO item VALUES(2, ‘Nut’, 5.00, 110);
INSERT INTO item VALUES(3, ‘Bolt’, 3.99, 75);
INSERT INTO item VALUES(4, ‘Hammer’, 9.99, 125);
INSERT INTO item VALUES(5, ‘Washer’, 1.99, 100);
INSERT INTO item VALUES(6, ‘Nail’, 0.99, 300);

INSERT INTO invoice VALUES(1001, TO_DATE(‘05-09-2003’, ‘dd-mm-yyyy’), 212);
INSERT INTO invoice VALUES(1002, TO_DATE(‘17-09-2003’, ‘dd-mm-yyyy’), 225);
INSERT INTO invoice VALUES(1003, TO_DATE(‘17-09-2003’, ‘dd-mm-yyyy’), 239);
INSERT INTO invoice VALUES(1004, TO_DATE(‘18-09-2003’, ‘dd-mm-yyyy’), 211);
INSERT INTO invoice VALUES(1005, TO_DATE(‘21-09-2003’, ‘dd-mm-yyyy’), 212);

INSERT INTO invitem VALUES(1001, 1, 5);
INSERT INTO invitem VALUES(1001, 3, 5);
INSERT INTO invitem VALUES(1001, 5, 9);
INSERT INTO invitem VALUES(1002, 1, 2);
INSERT INTO invitem VALUES(1002, 2, 3);
INSERT INTO invitem VALUES(1003, 1, 7);
INSERT INTO invitem VALUES(1003, 2, 1);
INSERT INTO invitem VALUES(1004, 4, 5);
INSERT INTO invitem VALUES(1005, 4, 10);

INSERTION OF ROWS WITH SUBSTITUTION VARIABLES

Alternate Method

INSERT INTO customer
VALUES(&customer_no, ‘&customer_name’, ‘&state’, ‘&phone’);

INSERT INTO item
VALUES(&item_no, ‘&item_name’, &price, &qty_on_hand);

ShahCh09v3.qxd 4/16/04 11:58 AM Page 217

218 SQL Review: Supplementary Examples

INSERT INTO invoice
VALUES(&inv_no, TO_DATE (‘&inv_date’, ‘dd-mm-yyyy’), &cust_no);

INSERT INTO invitem
VALUES(&invoice_no, &item_no, &qty);

Display all Customer Information

SELECT *
FROM customer;

Display all Item Names and their Respective Unit Price

SELECT ItemName, ItemPrice
FROM item;

Display Unique Invoice Numbers from the INVITEM Table

SELECT DISTINCT InvNo
FROM invitem;

Display Item Information with Appropriate Column
Aliases

SELECT ItemNo “Item Number”, ItemName “Name of Item”,
ItemPrice “Unit Price”
FROM item;

Display Item Name and Price Using Concatenation

SELECT ItemName || ‘has a unit price of $’ || ItemPrice FROM item;

Find the Total Value of Each Item Based on Quantity on
Hand

SELECT ItemName, ItemPrice * QtyOnHand “Total Value”
FROM item;

Find Customers from Florida

SELECT *
FROM customer
WHERE UPPER(State) = ‘FL’;

Display Items with a Unit Price of at Least $5

SELECT UPPER (ItemName), ItemPrice
FROM item
WHERE ItemPrice >= 5;

ShahCh09v3.qxd 4/16/04 11:58 AM Page 218

SQL Review: Supplementary Examples 219

Find Items with a Unit Price Between $2 and $5

SELECT *
FROM item
WHERE ItemPrice BETWEEN 2 and 5;

or

SELECT *
FROM item
WHERE ItemPrice >= 2 AND ItemPrice <= 5;

Find Customers from the Tristate Area of New York,
New Jersey, and Connecticut

SELECT *
FROM customer
WHERE State IN (‘NJ’, ‘NY’, ‘CT’);

Find all Customers Whose Names Start with the Letter E

SELECT *
FROM customer
WHERE UPPER(CustName) LIKE ‘E%’;

Find Items with the Letter W in their Name

SELECT *
FROM item
WHERE ItemName LIKE ‘%w%’;

Sort all Customers Alphabetically

SELECT *
FROM customer
ORDER BY CustName;

Sort all Items in Descending Order by their Price

SELECT *
FROM item
ORDER BY ItemPrice DESC;

Sort all Customers by their State and also Alphabetically

SELECT *
FROM customer
ORDER BY State, CustName;

ShahCh09v3.qxd 4/16/04 11:58 AM Page 219

220 SQL Review: Supplementary Examples

Display all Customers from New Jersey Alphabetically

SELECT *
FROM customer
WHERE UPPER(State) = ’NJ’
ORDER BY CustName;

Display all Item Prices Rounded to the Nearest Dollar

SELECT ItemName, ROUND(ItemPrice, 0)
FROM item;

Find the Payment Due Date if the Payment is Due in
Two Months from the Invoice Date

SELECT InvNo, CustNo, InvDate, ADD_MONTHS(InvDate, 2) “Payment Due”
FROM invoice;

or
SELECT InvNo, CustNo, InvDate, InvDate + 60 “Payment Due”

FROM invoice;

Display Invoice Dates in “September 05, 2003” Format

SELECT InvNo, TO_CHAR (InvDate, ‘fmMonth DD, YYYY’) “Invoice Date”
FROM invoice;

Find the Total, Average, Highest, and Lowest Unit Prices

SELECT SUM (ItemPrice), AVG (ItemPrice), MAX (ItemPrice), MIN (ItemPrice)
FROM item;

Display How Many Different Items Are Available for
Customers

SELECT COUNT (*)
FROM item;

Count the Number of Items Ordered in Each Invoice

SELECT InvNo, COUNT(ItemNo) “Items Ordered”
FROM invitem
GROUP BY InvNo;

Find Invoices in which Three or More Items Are Ordered

SELECT InvNo, COUNT(ItemNo) “Items Ordered”
FROM invitem
GROUP BY InvNo
HAVING COUNT(ItemNo) >= 3;

ShahCh09v3.qxd 4/16/04 11:58 AM Page 220

SQL Review: Supplementary Examples 221

Find all Possible Combinations of Customers and Items
(Cartesian Product)

SELECT c.*, t.*
FROM customer c, item t;

Display all Item Quantities and Item Prices for Invoices

SELECT a.InvNo, a.ItemNo, b.ItemName, a.Qty, b.ItemPrice, a.Qty * b.ItemPrice “qty*price”
FROM invitem a, item b
WHERE a.ItemNo = b.ItemNo;

Find the Total Price for Each Invoice

SELECT a.InvNo, SUM(a.Qty * b.ItemPrice) “Total Amount”
FROM invitem a, item b
WHERE a.ItemNo = b.ItemNo
GROUP BY a.InvNo;

Use an Outer Join to Display Items Ordered and Not Or-
dered

SELECT x.ItemNo, y.InvNo
FROM item x, invitem y
WHERE x.ItemNo = y.ItemNo(+);

Display Invoices, Customer Names, and Item Names To-
gether (Multiple Joins)

SELECT a.InvNo, b.CustName, c.ItemName, d.Qty
FROM invoice a, customer b, item c, invitem d
WHERE a.CustNo = b.CustNo AND a.InvNo = d.InvNo
AND c.ItemNo = d.ItemNo;

Find Invoices with HAMMER as an Item

SELECT v.InvNo, t.ItemName, v.Qty
FROM invitem v, item t
WHERE v.ItemNo = t.ItemNo AND UPPER(ItemName) = ‘HAMMER’;

Find Invoices with HAMMER as an Item by Using a Sub-
query

SELECT InvNo, Qty “Hammers ordered”
FROM invitem
WHERE ItemNo =
(SELECT ItemNo FROM item WHERE Upper(t.ItemName) = ‘HAMMER’);

ShahCh09v3.qxd 4/16/04 11:58 AM Page 221

222 SQL Review: Supplementary Examples

Display the Items Ordered in Invoice Number 1001 (Sub-
query)

SELECT ItemName
FROM item
WHERE ItemNo IN
(SELECT ItemNo FROM invitem WHERE InvNo = 1001);

Find Items That Are Chapter than NUT

SELECT ItemName, ItemPrice
FROM item
WHERE ItemPrice <
(SELECT ItemPrice FROM item WHERE UPPER(ItemName) = ‘NUT’);

Create a New Table for all New Jersey Customers Based
on the Existing CUSTOMER Table

CREATE TABLE nj_customer
AS
SELECT CustNo, CustName, Phone

FROM customer
WHERE UPPER(State) = ‘NJ’;

Copy all New York Customers to the Newly Created
NJ_CUSTOMER Table

INSERT INTO nj_customer
SELECT CustNo, CustName, Phone
FROM customer
WHERE UPPER(State) = ‘NY’;

Rename NJ_CUSTOMER Table to NYNJ_CUSTOMER

RENAME nj_customer TO nynj_customer;

Find Customers Who Are Not from New York or New
Jersey (Set Operator)

SELECT CustName, State
FROM customer

MINUS
SELECT CustName, State

FROM nynj_customer;

ShahCh09v3.qxd 4/16/04 11:58 AM Page 222

SQL Review: Supplementary Examples 223

Delete Rows from the CUSTOMER Table that Are also in
the NYNJ_CUSTOMER Table

DELETE FROM customer
WHERE CustNo IN
(SELECT CustNo FROM nynj_customer);

Find the Items with the Top-Three Prices

SELECT ROWNUM, ItemName, ItemPrice
FROM (SELECT ItemName, ItemPrice FROM item ORDER BY ItemPrice DESC)

WHERE ROWNUM <=3;

Find the Two Items with the Lowest Quantity on Hand

SELECT ROWNUM, ItemName, ItemPrice, QtyOnHand
FROM (SELECT ItemName, ItemPrice, QtyOnHand FROM item ORDER BY QtyOnHand)

WHERE ROWNUM <=2;

Create a Simple View with Item Names and Item Prices
Only

CREATE OR REPLACE VIEW item_vu(Name, Price)
AS
SELECT ItemName, ItemPrice

FROM item;

Create a View that Displays Invoice Number and Cus-
tomer Names for New Jersey Customers

CREATE OR REPLACE VIEW nj_cust_vu
AS
SELECT InvNo, CustName

FROM invoice, customer
WHERE invoice.CustNo = customer.CustNo
AND UPPER(State) = ‘NJ’

WITH CHECK OPTION;

Create a Sequence that Can Be Used to Enter New Items
into the ITEM Table

CREATE SEQUENCE itemnum_seq
INCREMENT BY 1
START WITH 7
MAXVALUE 99

ShahCh09v3.qxd 4/16/04 11:58 AM Page 223

224 SQL Review: Supplementary Examples

NOCYCLE
NOCACHE
ORDER;

Add a New Item into the ITEM Table with the
ITEMNUM_SEQ Sequence

INSERT INTO item
VALUES (itemnum_seq.NEXTVAL, ‘Scissors’, 7.95, 100);

Create a Synonym for the INVITEM Table

CREATE SYNONYM ii
FOR invitem;

Create an Index File Based on Customer Name

CREATE INDEX customer_name_idx
ON customer(CustName);

Lock Customer Bayer’s Record to Update State and Phone
Number

SELECT *
FROM customer
WHERE UPPER(CustName) = ‘BAYER’
FOR UPDATE OF State, Phone
NOWAIT;

Give Everybody SELECT and INSERT Rights on Your ITEM
Table

GRANT select, insert
ON item
TO public;

Revoke the INSERT Option on the ITEM Table from User
BOND

REVOKE insert
ON item
FROM bond;

ShahCh09v3.qxd 4/16/04 11:58 AM Page 224

PART 3
PL/SQL

10

PL/SQL:

A Programming Language

IN THIS CHAPTER . . .

� You will learn the basics of the PL/SQL programming language.
� The PL/SQL anonymous block is introduced.
� Variables, constants, data types, and declarations are discussed.
� The assignment statement and use of arithmetic operators are covered.
� The scope and use of various types of variables are shown in sample programs.
� You will be prepared to write simple PL/SQL blocks.

In Part 2, you learned Oracle’s nonprocedural language SQL and its various state-
ments to interface with the Oracle database. SQL is a great query language, but it
has its limitations. So, Oracle Corporation has added a procedural language exten-
sion to SQL known as Programming Language Extensions to Structured Query
Language (PL/SQL). It is Oracle’s proprietary language for access of relational
table data. PL/SQL is like any other high-level compiler language. If you are already
familiar with another programming language, you will find PL/SQL constructs to be
similar to those of Pascal, C, or Visual Basic. PL/SQL also possesses features of object-
oriented languages, such as:

� Data encapsulation.
� Error handling.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 225

226 Chap. 10 PL/SQL: A Programming Language

� Information hiding.
� Object-oriented programming (OOP).

PL/SQL also allows embedding of SQL statements and data manipulation in
its blocks. SQL statements are used to retrieve data, and PL/SQL control statements
are used to process data in a PL/SQL program. The data can be inserted, deleted, or
updated through a PL/SQL block, which makes it an efficient transaction-processing
language.

The Oracle Server has an engine to execute SQL statements. The server also
has a separate engine for PL/SQL. Oracle Developer tools have a separate engine
to execute PL/SQL as well. The SQL statements are sent one at a time to the server
for execution, which results in individual calls to the server for each SQL statement.
It may also result in heavy network traffic. On the other hand, all SQL statements
within a single PL/SQL block are sent in a single call to the server, which reduces
overhead and improves performance.

A BRIEF HISTORY OF PL/SQL

Before PL/SQL was developed, users embedded SQL statements into hot languages
like C++ and Java. PL/SQL version 1.0 was introduced with Oracle 6.0 in 1991. Ver-
sion 1.0 had very limited capabilities, however, and was far from being a full-fledged
programming language. It was merely used for batch processing.

With versions 2.0, 2.1, and 2.2, the following new features were introduced:

� The transaction control statements SAVEPOINT,ROLLBACK,and COMMIT.
� The DML statements INSERT, DELETE, and UPDATE.
� The extended data types Boolean, BINARY_INTEGER, PL/SQL records,

and PL/SQL tables.
� Built-in functions—character, numeric, conversion, and date functions.
� Built-in packages.
� The control structures sequence, selection, and looping.
� Database access through work areas called cursors.
� Error handling.
� Modular programming with procedures and functions.
� Stored procedures, functions, and packages.
� Programmer-defined subtypes.
� DDL support through the DBMS_SQL package.
� The PL/SQL wrapper.
� The DBMS_JOB job scheduler.
� File I/O with the UTF_FILE package.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 226

Fundamentals of PL/SQL 227

PL/SQL version 8.0, also known as PL/SQL8, came with Oracle8, the “object-
relational” database software. Oracle allows creation of objects that can be accessed
with Java, C++, Object COBOL, and other languages. It also allows objects and re-
lational tables to coexist. The external procedures in Oracle allow you to compile
procedures and store them in the shared library of the operating system—for exam-
ple, an .so file in UNIX or a .dll (Dynamic Linked Library) file in Windows. Oracle’s
library is written in the C language. It also supports LOB (Large Object) data types.

FUNDAMENTALS OF PL/SQL

A PL/SQL program consists of statements.You may use upper- or lowercase letters in
your program. In other words, PL/SQL is not case sensitive except for character string
values enclosed in single quotes. Like any other programming language, PL/SQL
statements consist of reserved words, identifiers, delimiters, literals, and comments.

Reserved Words

The reserved words, or key words, are words provided by the language that have a
specific use in the language. For example, DECLARE, BEGIN, END, IF, WHILE,
EXCEPTION, PROCEDURE, FUNCTION, PACKAGE, and TRIGGER are some
of the reserved words in PL/SQL.

User-Defined Identifiers

User-defined identifiers are used to name variables, constants, procedures, func-
tions, cursors, tables, records, and exceptions.A user must obey the following rules in
naming these identifiers:

� The name can be from 1 to 30 characters in length.
� The name must start with a letter.
� Letters (A–Z, a–z), numbers, the dollar sign ($), the number sign (#) and the

underscore (_) are allowed.
� Spaces are not allowed.
� Other special characters are not allowed.
� Key words cannot be used as user-defined identifiers.
� Names must be unique within a block.
� A name should not be the same as the name of a column used in the block.

It is a good practice to create short and meaningful names. Figure 10-1 shows a
list of valid user-defined identifiers. Figure 10-2 shows a list of invalid user-defined
identifiers along with reasons why they are invalid.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 227

228 Chap. 10 PL/SQL: A Programming Language

Literals

Literals are values that are not represented by user-defined identifiers. Literals are
of three types: numeric, character, and boolean. For example:

Numeric 100, 3.14, 5.25E7, or NULL
Character ‘A’, ‘this is a string’, ‘0001’, ‘25-MAY-00’, ‘ ’, or NULL
Boolean TRUE, FALSE, or NULL

In this list of values, ‘25-MAY-00’ looks like a date value, but it is a character string. It
can be converted to date format by using the TO_DATE function. The value ‘’ (two
single quotes having nothing within) is another way of entering the NULL value.

PL/SQL is case sensitive regarding character values within single quotation
marks. The values ‘ORACLE’, ‘Oracle’, and ‘oracle’ are three different values in
PL/SQL. To embed a single quote in a string value, two single quote symbols are
entered—for example, ‘New Year”s Day’.

Numeric values can be entered in scientific notation with the letter E or e.
Boolean values are not enclosed in quotation marks.

PL/SQL BLOCK STRUCTURE

PL/SQL is a block-structured language. A program can be divided into logical
blocks. The block structure gives modularity to a PL/SQL program, and each object
within a block has “scope.” Blocks are of two types:

1. An anonymous block is a block of code without a name. It can be used any-
where in a program and is sent to the server engine for execution at runtime.

�55,

User-Defined Identifiers

Rate_of_pay
Num

A1234567890
Dollars$_and_cents

SS#

Figure 10-1 Valid user-defined identifiers.

Invalid User-Defined Identifiers Reason

2Number Starts with a number
Employee-name Special character hyphen
END Reserved word
Department number Spaces
Largest_yearly_salary_paid_to_employees Too long
Taxrate% Special character %

Figure 10-2 Invalid user-defined identifiers.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 228

PL/SQL Block Structure 229

2. A named block is a block of code that is named.A subprogram is a named
block that can be called and can take arguments. A procedure is a subpro-
gram that can perform an action, whereas a function is a subprogram that
returns a value.A package is formed from a group of procedures and func-
tions. A trigger is a block that is called implicitly by a DML statement.

A PL/SQL block consists of three sections:

1. A declaration section.
2. An executable section.
3. An exception-handling section.

Figure 10-3 shows the use of three sections in a PL/SQL block. Of the three sections
in a PL/SQL block, only the executable section is mandatory.The declaration and ex-
ception-handling sections are optional. The general syntax of an anonymous block is

[DECLARE
Declaration of constants, variables, cursors, and exceptions]

BEGIN
Executable PL/SQL and SQL statements

[EXCEPTION
Actions for error conditions]

END;

The DECLARE and EXCEPTION key words are optional, but the BEGIN and END
key words are mandatory.The declarations made within a block are local to the block.

When a block ends, all objects declared within the block cease to exist.A block
is the “scope” of objects declared in that block. When blocks are nested within each
other, the declarations made in the outer block are global to the inner block.The ob-
ject declarations made in the inner block, however, are local to it and cannot be ref-
erenced by the outer block. A basic PL/SQL block can be embedded in any other
PL/SQL block, named or unnamed. Figure 10-4 shows all the blocks available in the
Oracle server environment.

Section Use

Declaration An optional section to declare variables, constants, cursors, PL/SQL
composite data types, and user-defined exceptions, which are referenced
in executable and exception-handling sections.

Executable A mandatory section that contains PL/SQL statements to manipulate
data in the block and SQL statements to manipulate the database.

Exception handling Specifies action statements to perform when an error condition exists in
the executable section. It is also an optional section.

Figure 10-3 Sections in a PL/SQL block.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 229

230 Chap. 10 PL/SQL: A Programming Language

COMMENTS

Comments are used to document programs.They are written as part of a program, but
they are not executed. In fact, comments are ignored by the PL/SQL engine. It is a good
programming practice to add comments to a program, because this helps in readability
and debugging of the program.There are two ways to write comments in PL/SQL:

1. To write a single-line comment, two dashes (--) are entered at the begin-
ning of a new line. For example,

- -This is a single-line comment.

2. To write a multiline comment, comment text is placed between and
A multiline comment can be written on a separate line by itself, or it can
be used on a line of code as well. For example,

/* This is a
multiline comment
that ends here. */

A programmer can use a comment anywhere in the program.

DATA TYPES

Each constant and variable in the program needs a data type. The data type decides
the type of value that can be stored in a variable. PL/SQL has four data types:

1. Scalar.
2. Composite.
3. Reference.
4. LOB.

/./

Block Use

Anonymous block An unnamed block, that is independent or embedded within an
application.

Procedure/function A named block that is stored on the Oracle server, can be called by its
name, and can take arguments.

Package A named PL/SQL module that is a group of functions, procedures, and
identifiers.

Trigger A block that is associated with a database table or a view. It is executed
when automatically fired by a DML statement.

Figure 10-4 Programming constructs.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 230

Data Types 231

A scalar data type is not made up of a group of elements. It is atomic in nature. The
composite data types are made up of elements or components. PL/SQL supports
three composite data types—records, tables, and varrays, which are discussed in a
later chapter.The reference data types deal with objects, which are briefly introduced
in Appendix D.

There are four major categories of scalar data types:

1. Character.
2. Number.
3. Boolean.
4. Date.

Other scalar data types include raw, rowid, and trusted.

Character

Variables with a character data type can store text. The text may include letters,
numbers, and special characters.The text in character-type variables can be manipu-
lated with built-in character functions. Character data types include CHAR and
VARCHAR2.

CHAR. The CHAR data type is used for fixed-length string values.The allow-
able string length is between 1 and 32,767. (If you remember, the allowable length in
the Oracle database is only 2000.) If you do not specify a length for the variable, the
default length is one. Get into the habit of specifying length along with the data type
to avoid any errors.

If you are going to declare a variable of the CHAR type in PL/SQL code and
that value is to be inserted into a table’s column, the limitation on database size is
only 2000 characters. You will have to find the substring of that character value to
avoid the error message for inserting a character string longer than the length of the
column.

If you specify a length of 10 and the assigned value is only five characters long,
the value is padded with trailing spaces because of the fixed-length nature of this
data type. The CHAR type is not storage efficient, but it is performance efficient.

VARCHAR2. The VARCHAR2 type is used for variable-length string val-
ues.Again, the allowable length is between 1 and 32,767.A column in an Oracle data-
base with a VARCHAR2 type, however, can only take 4000 characters, which is
smaller than the allowable length for the variable.

Suppose you have two variables with data type of CHAR(20) and VAR-
CHAR2(20), and both are assigned the same value, ‘Oracle9i PL/SQL’. The string
value is only 15 characters long.The first variable, with CHAR(20), is assigned a value
padded with five spaces; the variable with VARCHAR2(20) does not get a string value

ShahCh10v3.qxd 4/16/04 11:59 AM Page 231

232 Chap. 10 PL/SQL: A Programming Language

padded with spaces. If the values of both variables are compared in a condition for
equality, FALSE will be returned.

Other character data types are LONG (32,760 bytes, shorter than VARCHAR2),
RAW (32,767 bytes), and LONG RAW (32,760 bytes, shorter than RAW). The RAW
data values are neither interpreted nor converted by Oracle.

VARCHAR2 is the most recommended character data type.

Number

PL/SQL has a variety of numeric data types. Whole numbers or integer values can
be handled by following data types:

BINARY_INTEGER (approximately to or billion to
billion)
INTEGER
INT
SMALLINT
POSITIVE (a subtype of BINARY_INTEGER—range, 0 to)
NATURAL (a subtype of BINARY_INTEGER—range, 1 to)

Similarly, there are various data types for decimal numbers:

NUMBER
DEC (fixed-point number)
DECIMAL (fixed-point number)
NUMERIC (fixed-point number)
FLOAT (floating-point number)
REAL (floating-point number)
DOUBLE PRECISION (floating-point number)

You are familiar with the NUMBER type from the Oracle table’s column type.
The NUMBER type can be used for fixed-point or floating-point decimal numbers.
It provides an accuracy of up to 38 decimal places. When using the NUMBER type,
the precision and scale values are provided. The precision of a number is the total
number of significant digits in that number, and the scale is the number of signifi-
cant decimal places. The precision and scale values must be whole-number integers.
For example,

NUMBER(p, s)

where p is precision and s is scale.
If scale has a value that is negative, positive, or zero, it specifies rounding of the

number to the left of the decimal place, to the right of the decimal place, or to the
nearest whole number, respectively. If a scale value is not used, no rounding occurs.

231
231

+2-2231 - 1,-231 + 1

ShahCh10v3.qxd 4/16/04 11:59 AM Page 232

Other Data Types 233

Boolean

PL/SQL has a logical data type, Boolean, that is not available in SQL. It is used for
Boolean data TRUE, FALSE, or NULL only.These values are not enclosed in single
quotation marks like character and date values.

Date

The date type is a special data type that stores date and time information. The date
values have a specific format.A user can enter a date in many different formats with
the TO_DATE function, but a date is always stored in standard 7-byte format. A
date stores the following information:

Century
Year
Month
Day
Hour
Minute
Second

The valid date range is from January 1, 4712 B.C., to December 31, 9999 A.D.
The time is stored as the number of seconds past midnight. If the user leaves out the
time portion of the data, it defaults to midnight (12:00:00 A.M.).

Various DATE functions are available for date calculations. For example, the
SYSDATE function is used to return the system’s current date.

OTHER DATA TYPES

NLS

The National Language Support (NLS) data type is for character sets in which mul-
tiple bytes are used for character representation. NCHAR and NVARCHAR2 are
examples of NLS data types.

LOB

Like Oracle9i, PL/SQL also supports Large Object (LOB) data types to store large
values of character, raw, or binary data. The LOB types allow up to 4 gigabytes of
data. LOB variables can be given one of the following data types:

� The BLOB type contains a pointer to the large binary object inside the
database.

� The CLOB type contains a pointer to a large block of single-byte character
data of fixed width.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 233

234 Chap. 10 PL/SQL: A Programming Language

� The NCLOB type contains a pointer to a large block of multibyte character
data of fixed width.

� The BFILE type contains a pointer to large binary objects in an external op-
erating system file. It would contain the directory name and the filename.

Oracle provides users with a built-in package, DBMS_LOB, to manipulate the
contents of LOBs.

VARIABLE DECLARATION

A scalar variable or a constant is declared with a data type and an initial value assign-
ment.The declarations are done in the DECLARE section of the program block.The
initial value assignment for a variable is optional unless it has a NOT NULL con-
straint. The constants and NOT NULL type variables must be initialized. The general
syntax is

DECLARE
identifiername [CONSTANT] datatype [NOT NULL] [:= | DEFAULT expression];

where identifiername is the name of a variable or constant. A CONSTANT is an
identifier that must be initialized and the value of which cannot be changed in the
program body. A NOT NULL constraint can be used for variables, and such vari-
ables must be initialized. The DEFAULT clause, or can be used to initialize a
constant or a variable to a value. An expression can be a literal, another variable, or
an expression.

The identifiers are named based on rules given previously in this chapter. Dif-
ferent naming conventions can be used.You should declare one variable per line for
good readability. For example,

DECLARE
v_number NUMBER(2);
v_count NUMBER(1) := 1;
v_state VARCHAR2(2) DEFAULT ‘NJ’;
c_pi CONSTANT NUMBER := 3.14;
v_invoicedate DATE DEFAULT SYSDATE;

In this example, you see a naming convention that uses prefix v_ for variables and
prefix c_ for constants.

ANCHORED DECLARATION

PL/SQL uses %TYPE attribute to anchor a variable’s data type. Another variable
or a column in a table can be used for anchoring. In anchoring, you tell PL/SQL to

:= ,

ShahCh10v3.qxd 4/16/04 11:59 AM Page 234

Anchored Declaration 235

use a variable or a column’s data type as the data type for another variable in the
program. The general syntax is

variablename typeattribute%TYPE [value assignment];

where typeattribute is another variable’s name or table’s column with a table qualifi-
er (e.g., tablename.columnname). It is very useful while retrieving a value of a col-
umn into a variable with a SELECT query in PL/SQL. For example,

DECLARE
v_num1 NUMBER(3);
v_num2 v_num1%TYPE;

in this example, v_num1 is declared with a data type NUMBER(3). The next vari-
able, v_num2, is declared using the anchoring method and the declaration attribute
%TYPE. The variable v_num2 gets the same data type as v_num1.

Two variables can also be declared and assigned data types to match the col-
umn’s data type. The advantage is that you do not have to cross-reference the data
type used in the table. Oracle does that for you. For example,

DECLARE
v_empsal employee.Salary%TYPE;
v_deptname dept.DeptName%TYPE;

Suppose you do not use the anchoring method to declare variables, which are
assigned values directly from table columns.You can use the DESCRIBE command
to list all the data types for columns. Then, you can declare variables in a program
with the same types and lengths.This will work just fine.The problem will arise when
the column lengths are increased to meet future demands. When you assign values
from those columns to variables, VALUE_ERROR will occur—and you will have
to go back to all the programs to change the variable’s data length! Anchoring defi-
nitely is an advantage in such situations.

A %TYPE declaration anchors the data type of one variable based on anoth-
er variable or column at the time of a PL/SQL block’s compilation. If the source or
original column’s data type is changed, the PL/SQL block must be recompiled to re-
anchor all anchored variables.

Nested Anchoring

The %TYPE attribute’s use can be nested. For example,

DECLARE
– – source variable v_commission
v_commission NUMBER(7, 2);
– – anchored variable v_total_commission
v_total_commission v_commission%TYPE;
– – nested anchoring variable v_net_commission
v_net_commission v_total_commission%TYPE;

ShahCh10v3.qxd 4/16/04 11:59 AM Page 235

236 Chap. 10 PL/SQL: A Programming Language

In this example, the original variable v_commission anchors v_total_commission,
which in turn is used to anchor v_net_commission. There is no limit on the number
of layers of nesting in anchored declarations.

The source variable for a %TYPE declaration does not have to be in the same
block. The variable could be a global variable declared at the environ-
ment, or it could be declared in a block that contains the current block.

NOT NULL Constraint for %TYPE Declarations

If a source variable is declared with a NOT NULL constraint, the %TYPE declara-
tion inherits the NOT NULL constraint from the source, its anchor. The anchored
variable must be initialized with a value in the %TYPE declaration.

If the source for a %TYPE declaration is a table’s column, the NOT NULL
constraint is not inherited by the anchored variable.There is no need to initialize the
anchored variable, and it can be assigned a NULL value.

ASSIGNMENT OPERATION

The assignment operation is one of the ways to assign a value to a variable.You have
already learned that a variable can be initialized at the time of declaration by using
the DEFAULT option or The assignment operation is used in the executable
section of the program block to assign a literal, another variable’s value, or the result
of an expression to a variable. The general syntax is

VariableName := Literal | VariableName | Expression;

For example,

v_num1 := 100;
v_num2 := v_num1;
v_sum := v_num1 + v_num2;

In these examples, the assumption is made that three variables have already
been declared.The first example assigns 100 to the variable v_num1. The second ex-
ample assigns the value of the variable v_num1 to the variable v_num2. The third
example assigns the result of an addition operation on v_num1 and v_num2 to the
variable v_sum.

The following statements are examples of invalid assignment operations and
the reasons for their lack of validity:

v_count = 10; /* Wrong assignment operator, = sign */
v_count * 2 := v_double; /* Expression cannot be on the left. */
v_num1 := v_num2 :=v_num3; /* Cannot use two assignments in one statement. */

:= .

SQL * Plus

ShahCh10v3.qxd 4/16/04 11:59 AM Page 236

Bind Variables 237

BIND VARIABLES

Bind variables are also known as host variables. These variables are declared in the
host environment and are accessed by a PL/SQL block. Anonymous
blocks do not take any arguments, but they can access host variables with a colon
prefix (:) and the host variable name. Host variables can be passed to procedures
and functions as arguments. A host variable is declared at the prompt with
the VARIABLE statement. The syntax of a host variable declaration is

VARIABLE variablename datatype

For example,

SQL> VARIABLE double NUMBER

When a numeric variable is declared with VARIABLE command, precision
and scale values are not used. If a VARCHAR2-type variable is declared, length is
not used. A host variable’s value can be printed in the environment by
using the PRINT command.

Let us put everything together in a program. The program contains a script
that includes statements and a PL/SQL block.

In Figure 10-5, two types of variables are used, a local variable v_num and a
host variable g_double. The host variable g_double is declared in with a
VARIABLE statement, and the program block references it with a colon prefix (:).
The local variable v_num is declared in the declaration section of a program block;
there is no need to use the colon prefix with it. The program assigns the value 5 to

SQL * Plus

SQL * Plus

SQL * Plus

SQL * Plus
SQL7

SQL * Plus

SQL> VARIABLE g_double NUMBER
SQL> DECLARE

2 v_num NUMBER(2);
3 BEGIN
4 v_num := 5;
5 :g_double := v_num * 2;
6 END;
7 /

PL/SQL procedure successfully completed.

SQL> PRINT g_double

G_DOUBLE
- - - - - - - - - - -

10

SQL>

Figure 10-5 Using a host variable in a PL/SQL block.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 237

238 Chap. 10 PL/SQL: A Programming Language

the local variable v_num, doubles it, and stores the result in the host variable
g_double. Finally, the resulting variable is printed in the host environment with a
PRINT statement.

Question: How does a PL/SQL block end?
Answer: It ends with an END and a semicolon on the same line and a slash
(/) on the next line.

The use of host variables should be minimized in a program block, because they
affect performance. Every time a host variable is accessed within the block, the PL/SQL
engine must stop to request the host environment for the value of the host variable.The
variable’s value can be assigned to a local variable to minimize calls to the host.

SUBSTITUTION VARIABLES IN PL/SQL

PL/SQL does not have any input capabilities in terms of having an input statement.
There are no explicit input/output (I/O) statements, but substitution variables of
SQL are available in PL/SQL. Substitution variables have limitations, which be-
come apparent in a loop.

Let us rewrite the program code in Figure 10-5 to the one in Figure 10-6.When
the code in Figure 10-6 is executed, a standard prompt for p_num appears on the
screen for users to type in a value for it. As you see in the example, there is no need

SQL> VARIABLE g_double NUMBER
SQL> DECLARE

2 v_num NUMBER(2);
3 BEGIN
4 v_num := &p_num;
5 :g_double := v_num * 2;
6 END;
7 /

Enter value for p_num: 10

PL/SQL procedure successfully completed.

SQL> PRINT g_double

G_DOUBLE
- - - - - - - - - - -

20

SQL>

Figure 10-6 Local, host, and substitution variables.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 238

Printing in PL/SQL 239

to declare substitution variables in the program block. The value of the bind/host
variable is printed with the PRINT command.The value of the local variable v_num
cannot be printed with the PRINT command, however, because the scope of a local
variable is within the block where it is declared.

When substitution variable is used in a program, the output contains lines
showing how the substitution was done. You can suppress those lines by using the
SET VERIFY OFF command before running the program.

PRINTING IN PL/SQL

There is no explicit output statement in PL/SQL. Oracle does have a built-in package
called DBMS_OUTPUT with the procedure PUT_LINE to print. An environment
variable named SERVEROUTPUT must be toggled ON to view output from it.

The DBMS_OUTPUT is the most frequently used package because of its ca-
pabilities to get lines from a file and to put lines into the buffer. The PUT_LINE
procedure displays information passed to the buffer and puts a new-line marker at
the end. For example,

DBMS_OUTPUT.PUT_LINE (‘This line will be displayed’);

The maximum size of the buffer is 1 megabyte.The following command enables
you to view information from the buffer by using the DBMS_OUTPUT package and
also sets the buffer size to the number of bytes specified:

SET SERVEROUTPUT ON [on size 10000];

The PL/SQL block in Figure 10-7 shows the use of DBMS_OUTPUT.PUT_
LINE. Another procedure, DBMS_OUTPUT.PUT, also performs the same task of

SQL> VARIABLE NUM NUMBER
SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 DOUBLE NUMBER;
3 BEGIN
4 :NUM := 5;
5 DOUBLE := :NUM * 2;
6 DBMS_OUTPUT.PUT_LINE ((’DOUBLE OF ’ ||
7 TO_CHAR(:NUM) || ’ IS ’ || TO_CHAR(DOUBLE));
8 END;
9 /

DOUBLE OF 5 IS 10

PL/SQL procedure successfully completed.

SQL>

Figure 10-7 DBMS_OUTPUT.PUT_LINE.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 239

240 Chap. 10 PL/SQL: A Programming Language

displaying information from the buffer, but it does not put a new-line marker at the
end. If there is another DBMS_OUTPUT.PUT or DBMS_OUTPUT.PUT_LINE
statement following that statement, its output will be displayed on the same line.

ARITHMETIC OPERATORS

Five standard arithmetic operators are available in PL/SQL for calculations. If more
than one operator exists in an arithmetic expression, the following order of prece-
dence is used:

� Exponentiation is performed first, multiplication and division are performed
next, and addition and subtraction are performed last.

� If more than one operator of the same priority is present, they are performed
from left to right.

� Whatever is in parentheses is performed first.

Figure 10-8 shows arithmetic operators and their use.

Arithmetic Operator Use

Addition
Subtraction and negation

* Multiplication
/ Division

** Exponentiation

�

�

Figure 10-8 Arithmetic operators.

Question: What is the answer from the following expression?

–2 + 3 * (10 – 2 * 3)/6

Answer: 0 (The operations within the parentheses are performed first, with
multiplication followed by subtraction. The result from within the paren-
theses is multiplied by 3, and that result is divided by 6. Finally, the result is
added to)

In this chapter, you learned the basics of PL/SQL. In the next chapter, you will
learn about three programming control structures: sequence, selection, and looping.
(You already know one of them.All examples in this chapter were based on sequence

-2

ShahCh10v3.qxd 4/16/04 11:59 AM Page 240

In a Nutshell . . . 241

structure.) You will also learn to interface with the Oracle server by embedding
SQL statements in PL/SQL program blocks.

IN A NUTSHELL . . .

� PL/SQL (Programming Language extension to Structured Query Language)
is Oracle’s proprietary language.

� PL/SQL contains features of modern languages, such as data encapsulation,
error handling, information hiding, and object-oriented programming (OOP).

� PL/SQL is a block-structured language. A block is of two types: anonymous
block and subprogram (procedures and functions).

� A program code contains reserved words, user-defined identifiers, delimiters,
comments, and literals.

� A program block consists of three sections: declaration, executable, and excep-
tion handling.

� A program uses variables and constants to hold values.A variable’s value can
be changed, but a constant’s value remains the same throughout the execu-
tion of the program.

� A variable is declared in the declarative section with a scalar data type. The
standard data types are number, character, Boolean, and date. PL/SQL also
supports other LOB (Large Object) data types.

� A declaration attribute %TYPE is used to anchor a variable with another
variable’s data type or with a table column’s data type.

� A bind variable, or host variable, is global to a PL/SQL block.An anonymous
block refers to it with a colon prefix (:). A bind variable is declared with the
VARIABLE statement and is printed with the PRINT statement in the

environment.
� An assignment statement is used in the executable section to assign a literal,

a variable’s value, or the result of an expression to a variable.An assignment
uses the operator.

� PL/SQL does not have an input statement, but substitution variables are al-
lowed in a block to assign a value to a variable.

� A built-in Oracle package and its procedure DBMS_OUTPUT.PUT_LINE
are used to output information.An environment variable SERVEROUTPUT
must be set to ON before using it.

� Arithmetic operators (and) are used in mathematical expres-
sions. The operations follow rules of precedence for evaluating expressions
with more than one operator.

**+ , - , *, /,

:=

SQL * Plus

ShahCh10v3.qxd 4/16/04 11:59 AM Page 241

242 Chap. 10 PL/SQL: A Programming Language

EXERCISE QUESTIONS

True/False:
1. PL/SQL is a nonprocedural language developed by Oracle Corporation.
2. The SQL language has built-in error checking and error handling, but PL/SQL does not.
3. Three types of variables used in a PL/SQL program are local, host, and substitution.
4. A variable with a NOT NULL constraint and a constant must be initialized with a value

at the declaration time.
5. An assignment statement is used in the executable section to assign value to a variable or

a constant.
6. In a declaration with the %TYPE attribute, the source is either a variable or a column in

a table.
7. If the source variable is declared with a NOT NULL constraint, the anchored variable in-

herits the same constraint.
8. If the source column in a table has a NOT NULL constraint, the anchored variable also

gets the NOT NULL constraint.
9. Exponentiation is performed before addition in an expression without any parentheses.

10. The declaration and executable sections are mandatory in a PL/SQL block.
11. A bind variable is declared with a VARIABLE command at the prompt.
12. A PL/SQL block must contain BEGIN and END key words.
13. A substitution variable is declared under the DECLARE section of a PL/SQL block.
14. A bind variable is used in a PL/SQL block with a colon prefix (:).
15. A local variable used in a PL/SQL block can be printed with the PRINT command.

Answer the Following Questions:
1. State differences between Oracle’s SQL and PL/SQL languages.
2. What are the two types of blocks in PL/SQL? What are the differences between them?
3. Name four standard scalar data types used in PL/SQL. When is each type used for vari-

ables?
4. Name three types of variables used in PL/SQL. Where are they declared? Give a sample

declaration of each.
5. Give any differences and similarities between and DEFAULT.
6. What are advantages of the %TYPE attribute in a variable declaration?
7. State the rules of precedence used in arithmetic operations.
8. How will you declare a bind variable named v_count, use it in a PL/SQL block, and print

its value?
9. Declare a variable v_val, which may not have a null value. Assign a value to v_val with a

substitution variable, and print that value.
10. How do you run a PL/SQL block?

:=

SQL7

ShahCh10v3.qxd 4/16/04 11:59 AM Page 242

Lab Activity 243

LAB ACTIVITY

1. Create a program script that uses a PL/SQL anonymous block to perform the following:
Use a host variable AREA to store the result. Declare a local variable RADIUS with
numeric data type. Declare a constant PI with value 3.14. Assign a value to the variable
RADIUS by using a substitution variable. Calculate area of a circle by using the formula

AREA = PI * RADIUS * RADIUS

Then, print the result in
2. Write a PL/SQL block to find the square, cube, and double of a number inputted with a

substitution variable, and print the results using the built-in package DBMS_OUTPUT.
3. Write a PL/SQL block to swap the values of two variables. Print the variables before and

after swapping.
4. Write a PL/SQL program to input hours and rate. Find gross pay and net pay with a tax

rate is 28%. Print your results. (No need to perform overtime calculations.)
5. Write a PL/SQL program with two variables, for the first name and the last name. Print

the full name with the last name and first name separated by comma and a space.

SQL * Plus.

ShahCh10v3.qxd 4/16/04 11:59 AM Page 243

11

More on PL/SQL:

Control Structures

and Embedded SQL

IN THIS CHAPTER . . .

� You will learn about various programming control structures in PL/SQL.
� Different decision-making statements based on various options are covered.
� Looping statements are introduced to perform a set of statements repetitively.
� SQL statements are embedded within a PL/SQL block to interact with the

Oracle server.

In the previous chapter, you learned the basics of the PL/SQL programming language.
You are now able to write simple programs using local, host, and substitution variables;
can perform simple calculations by using assignment statements; and know how to use
Oracle’s built-in package DBMS_OUTPUT.PUT_LINE in program blocks to display
results from the buffer. The sample programs and lab exercises have a series of state-
ments that are executed from the beginning to the end in a linear fashion. When an
anonymous block is executed, the code is sent to the PL/SQL engine for compilation.
In this chapter, you will see the use of different control structures employed in a high-
level programming language.

In the last chapter, you saw how to write PL/SQL programs independent of a
database.We start with more independent PL/SQL programs, and then show the actual
use of PL/SQL to interact with the Oracle database.A PL/SQL program block “talks”
to the Oracle database by embedding SQL statements in its executable section.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 244

Control Structures 245

CONTROL STRUCTURES

In a procedural language like PL/SQL, there are three basic programming control
structures:

1. In a sequential structure, a series of instructions are performed from the
beginning to the end in a linear order. None of the instructions is skipped,
and none of the instructions is repeated.

2. The selection structure is also known as a decision structure or an IF-
structure. It involves conditions with a TRUE or FALSE outcome. Based
on the outcome, one of the options is performed, and the other option is
skipped. Selection statements are also available for multiple options.

3. In a looping structure, a series of instructions is performed repeatedly.
There are different looping statements appropriate for a variety of situa-
tions. A programmer has to write a loop correctly to make it perform a
specific number of times.

We have already covered sequential statements in the previous chapter. In this
chapter, we will talk about the selection and the looping structures. In actuality, a
program may utilize one or a combination of all control structures.

Selection Structure

There are three selection or conditional statements in PL/SQL. Relational opera-
tors, logical operators, and other special operators are used to create Boolean ex-
pressions or conditions. The tables in Figures 11-1, 11-2, and 11-3 are repeated from
Chapter 5 for reading convenience. Figure 11-1 shows the use of relational opera-
tors, which constitute simple conditions. Figure 11-2 explains the use of logical oper-
ators in compound conditions. Figure 11-3 shows a truth table for the AND, OR, and
NOT operators. The AND and OR operators are binary operators, because they
work on two conditions. The NOT operator is a unary operator, because it works on
a single condition.

Relational Operator Meaning

Equal to
or Not equal to

Greater than
Greater than or equal to
Less than
Less than or equal to< �

 <
> �

 >
! � <>

 �

Figure 11-1 Relational operators.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 245

246 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

AND OR NOT

TRUE AND TRUE OR NOT

TRUE AND TRUE OR NOT

FALSE AND FALSE OR NOT

FALSE AND FALSE OR

NULL AND NULL OR

NULL AND NULL OR

NULL AND NULL OR NULL = NULLNULL = NULL

FALSE = NULLFALSE = FALSE

TRUE = TRUETRUE = NULL

FALSE = FALSEFALSE = FALSE

NULL = NULLTRUE = TRUETRUE = FALSE

FALSE = TRUEFALSE = TRUEFALSE = FALSE

TRUE = FALSETRUE = TRUETRUE = TRUE

Figure 11-3 Truth tables for AND, OR, and NOT operators.

Other special operators (IS NULL, IN, LIKE, and BETWEEN) dis-
cussed in the SQL section are also available in PL/SQL. PL/SQL has five condition-
al or selection statements available for decision making:

1. IF . . . IF.
2. IF IF.
3. IF IF.
4. CASE CASE.
5. Searched CASE.

IF IF. The IF IF statement is also
known as a simple IF statement. A simple IF statement performs action statements
if the result of the condition is TRUE. If the condition is FALSE, no action is per-
formed, and the program continues with the next statement in the block. The gener-
al syntax is

IF condition(s) THEN
Action statements

END IF;

For example, Figure 11-4 shows a simple IF statement with an output statement,
which will be performed if the day entered is ‘SUNDAY’. If the condition is false,
the statement is skipped. In this example, notice the use of the relational operator
equals in a Boolean condition and of the assignment operator in the action
assignment statement.

1:=21=2

. . . THEN . . . END . . . THEN . . . END

. . . END

 . . . THEN . . . ELSIF . . . END

. . . THEN . . . ELSE . . . END

 THEN . . . END

Á AND

Logical Operator Meaning

AND Returns TRUE only if both conditions are true.

OR Returns TRUE if one or both conditions are true.

NOT Returns TRUE if the condition is false.

Figure 11-2 Logical operators.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 246

Control Structures 247

You must have noticed the indentation in the program code. All program
statements can start in the first column. In fact, you can write more than one state-
ment on one line with the appropriate punctuation mark (;) separating them. Such
programming practice, however, can make your program difficult to read. In turn, it
is a good practice to indent statements within a block or a compound statement, be-
cause it makes your program more readable. A program will work just the same
without indenting statements or without adding a comment to it, but good program-
ming practices make everybody’s life easier.

IF IF. The IF
IF statement is an extension of the simple IF statement. It provides action statements
for the TRUE outcome as well as for the FALSE outcome. The general syntax is

IF condition(s) THEN
Action statements 1

ELSE
Action statements 2

END IF;

If the condition’s outcome is TRUE, action statements 1 are performed. If the out-
come is FALSE, action statements 2 are performed. One set of statements is skipped
in any case.

For an example, see Figure 11-5. If the entered age is 18 or older, age is dis-
played with string ADULT; otherwise, age is displayed with string MINOR.

 Á THEN Á ELSE Á END Á THEN Á ELSE Á END

SQL> DECLARE
2 V_DAY VARCHAR2(9) := ’&DAY’;
3 BEGIN
4 IF (V_DAY = ’SUNDAY’) THEN
5 DBMS_OUTPUT.PUT_LINE(’SUNDAY IS A HOLIDAY!’);
6 END IF;
7 END;
8 /

Enter value for day: SUNDAY

SUNDAY IS A HOLIDAY

PL/SQL procedure successfully completed.

SQL> /
Enter value for day: MONDAY

PL/SQL procedure successfully completed.

SQL>

Figure 11-4 Simple IF statement.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 247

248 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

IF IF. The IF . . . THEN . . . ELSIF . . . END
IF statement is an extension to the previous statement. When you have many alter-
natives/options, you can use previously explained statements, but the ELSIF alter-
native is more efficient than the other two. The DECODE function in SQL is not
allowed in PL/SQL, and the IF IF statement is not al-
lowed in SQL. The general syntax is

IF condition(s)1 THEN
Action statements 1

ELSIF condition(s)2 THEN
Action statements 2

. . .
ELSIF condition(s)N THEN

Action statement N
[ELSE

Else Action statements]
END IF;

Notice the word ELSIF, which does not have the last E in ELSE. ELSIF is a
single word, but END IF uses two words. For example, let us revisit the DECODE
function example of Chapter 6 (see Figure 11-6). Figure 11-7 shows the ELSIF
equivalent of the DECODE function.

The same statement can be written with a simple IF statement, though less effi-
ciently. You will need five simple IF statements to accomplish the same task as that
performed by a single compound ELSIF statement. Let us take another example

. . . THEN . . . ELS . . . END

 . . . THEN . . . ELSIF . . . END

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 V_AGE NUMBER(2) := ’&AGE’;
3 BEGIN
4 IF (V_AGE >=18) THEN
5 DBMS_OUTPUT.PUT_LINE(’AGE: ’ || V_AGE || ’ - ADULT’);
6 ELSE
7 DBMS_OUTPUT.PUT_LINE(’AGE: ’ || V_AGE || ’ - MINOR’);
8 END IF;
9 END;

10 /
Enter value for age: 21
AGE: 21 - ADULT

PL/SQL procedure successfully completed.

SQL> /
Enter value for age: 12
AGE: 12 - MINOR

PL/SQL procedure successfully completed.

SQL>

Figure 11-5 IF IF statement. . . . ELSE . . . END

ShahCh11v3.qxd 4/16/04 12:00 PM Page 248

Control Structures 249

SQL> SELECT LName, FName,
2 DECODE (PositionId, 1, Salary*1.2,
3 2, Salary*1.15,
4 3, Salary*1.1,
5 4, Salary*1.05,
6 Salary) “New Salary”
7 FROM employee;

LNAME FNAME New Salary
- -
Smith John 318000
Houston Larry 172500
Roberts Sandi 86250
McCall Alex 73150
Dev Derek 92000
Shaw Jinku 24500
Garner Stanley 51750
Chen Sunny 36750
Viquez Heillyn

9 rows selected.

SQL>

Figure 11-6 DECODE function.

SQL> DECLARE
2 v_pos NUMBER(1) := &Position;
3 BEGIN
4 IF v_pos=1 THEN
5 DBMS_OUTPUT.PUT_LINE(’20% increase’);
6 ELSIF v_pos=2 THEN
7 DBMS_OUTPUT.PUT_LINE(’15% increase’);
8 ELSIF v_pos=3 THEN
9 DBMS_OUTPUT.PUT_LINE(’10% increase’);

10 ELSIF v_pos=4 THEN
11 DBMS_OUTPUT.PUT_LINE(’5% increase’);
12 ELSE
13 DBMS_OUTPUT.PUT_LINE(’No increase’);
14 END IF;
15 END;
16 /

Enter value for position: 2
15% increase

PL/SQL procedure successfully completed.

SQL>

Figure 11-7 ELSIF statement.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 249

250 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

with compound conditions. First, we will use a simple IF statement (see Fig. 11-8),
and then, we will rewrite it by using ELSIF (Figure 11-9).

The example here assigns a grade of A, B, C, D, or F based on v_score. We are
assuming that the score is within the range of 0 to 100. You will need five simple IF
statements with total of 10 conditions or two conditions per each statement. Now,
suppose the value of v_score is 95. The first statement’s condition is TRUE, so
v_grade will be assigned ‘A’. Because all simple IF statements are independent state-
ments, the execution will continue with the next IF, and so on. There is no other
TRUE condition for v_score equal to 95, so v_grade will be ‘A’ after execution of all
five IF statements. This slows down your program’s execution. The ELSIF, on the
other hand, is one compound statement, and it stops as soon as a match is found. Let
us see how the ELSIF statement looks.

SQL> DECLARE
2 S NUMBER(3) := &SCORE;
3 GRADE CHAR;
4 BEGIN
5 IF S >= 90 AND S <= 100 THEN
6 GRADE := ’A’;
7 END IF;
8 IF S >= 80 AND S <= 89 THEN
9 GRADE := ’A’;

10 END IF;
11 IF S >= 70 AND S <= 79 THEN
12 GRADE := ’C’;
13 END IF;
14 IF S >= 60 AND S <= 69 THEN
15 GRADE := ’D’;
16 END IF;
17 IF S >= 0 AND S <= 59 THEN
18 GRADE := ’F’;
19 END IF;
20 IF S < 0 AND S > 100 THEN
21 GRADE := ’U’;
22 END IF;
23 DBMS_OUTPUT.PUT_LINE(’SCORE IS ’ || TO_CHAR(S));
24 DBMS_OUTPUT.PUT_LINE(’GRADE IS ’ || GRADE);
25 END;
26 /

Enter value for score: 93
SCORE IS 93
GRADE IS A

PL/SQL procedure successfully completed.

SQL>

Figure 11-8 Simple IF with multiple conditions.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 250

Control Structures 251

The ELSIF statement reduces the number of conditions from 10 to 5 and the
number of statements from five to one. Now, let us consider the same value, 95, as be-
fore.The condition is TRUE in the first IF clause, and v_grade is assigned value ‘A’.The
statement will not continue down anymore, because it will not enter the ELSIF part.
The rest of the statement is ignored, thus making ELSIF more efficient than its coun-
terpart (see Fig. 11-9). In this example, there is an added ELSIF statement to check for
invalid scores (below 0 as well as above 100), which result in an undefined (‘U’) grade.

CASE. The CASE statement is an alternative to the IF . . . THEN . . . ELSIF
. . . END IF statement.The CASE statement begins with key word CASE and ends with
the key words END CASE.The body of the CASE statement contains WHEN clauses,
with values or conditions,and action statements.When a WHEN clause’s value/condition
evaluates to TRUE, its action statements are executed.The general syntax is

CASE [variable_name]
WHEN value1|condition1 THEN action_statement1;
WHEN value2\condition2 THEN action_statement2;
…

SQL> DECLARE
2 S NUMBER(3) := &SCORE;
3 GRADE CHAR;
4 BEGIN
5 IF S >= 90 AND S <= 100 THEN
6 GRADE := ’A’;
7 ELSIF S >= 80 AND S <= 89 THEN
8 GRADE := ’B’;
9 ELSIF S >= 70 THEN

10 GRADE := ’C’;
11 ELSIF S >= 60 THEN
12 GRADE := ’D’;
13 ELSIF S >= 0 THEN
14 GRADE := ’F’;
15 ELSIF S < 0 AND S > 100 THEN
16 GRADE := ’U’;
17 END IF;
18 DBMS_OUTPUT.PUT_LINE(’SCORE IS ’ || TO_CHAR(S));
19 DBMS_OUTPUT.PUT_LINE(’GRADE IS ’ || GRADE);
20 END;
21 /

Enter value for score: 77
SCORE IS 77
GRADE IS C

PL/SQL procedure successfully completed.

SQL>

Figure 11-9 ELSIF statement.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 251

252 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

WHEN valueN|conditionN THEN action_statementN;
ELSE action_statement;

END CASE;

Searched CASE. A statement with a value is known as a CASE statement,
and a statement with conditions is known as a searched CASE statement. A CASE
statement uses variable_name as a selector, but a searched CASE does not use
variable_name as a selector. Figure 11-10 is an example of a CASE statement that
evaluates if a number is odd or even. Figure 11-11 rewrites the same solution for a
searched CASE statement.

SQL> DECLARE /* Example of Case */
2 V_NUM NUMBER := &ANY_NUM;
3 V_RES NUMBER;
4 BEGIN
5 V_RES := MOD(V_NUM, 2);
6 CASE V_RES
7 WHEN 0 THEN DBMS_OUTPUT.PUT_LINE(V_NUM || ’ IS EVEN’);
8 ELSE DBMS_OUTPUT.PUT_LINE(V_NUM || ’ IS ODD’);
9 END CASE;

10 END;
11 /

Enter value for any_num: 5
5 IS ODD

PL/SQL procedure successfully completed.

SQL>

Figure 11-10 CASE statement.

SQL> DECLARE /* Example of Searched Case */
2 V_NUM NUMBER := &ANY_NUM;
3 BEGIN
4 CASE
5 WHEN MOD(V_NUM, 2)=0 THEN
6 DBMS_OUTPUT.PUT_LINE(V_NUM || ’ IS EVEN’);
7 ELSE
8 DBMS_OUTPUT.PUT_LINE(V_NUM || ’ IS ODD’);
9 END CASE;

10 END;
11 /

Enter value for any_num: 5
5 IS ODD

PL/SQL procedure successfully completed.

SQL>

Figure 11-11 Searched CASE statement.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 252

Control Structures 253

SQL> DECLARE
2 V_GENDER CHAR := ’&SEX’;
3 V_AGE NUMBER(2) := ’&AGE’;
4 V_CHARGE NUMBER(3,2);
5 BEGIN
6 IF (V_GENDER = ’M’ AND V_AGE >= 25) THEN
7 V_CHARGE := 0.05;
8 END IF;
9 IF (V_GENDER = ’M’ AND V_AGE < 25) THEN

10 V_CHARGE := 0.10;
11 END IF;
12 IF (V_GENDER = ’F’ AND V_AGE >= 25) THEN
13 V_CHARGE := 0.03;
14 END IF;
15 IF (V_GENDER = ’F’ AND V_AGE < 25) THEN
16 V_CHARGE := 0.06;
17 END IF;
18 DBMS_OUTPUT.PUT_LINE(’GENDER: ’ || V_GENDER);
19 DBMS_OUTPUT.PUT_LINE(’AGE: ’ || TO_CHAR(V_AGE));
20 DBMS_OUTPUT.PUT_LINE(’SURCHARGE: ’ || TO_CHAR(V_CHARGE));
21 END;
22 /

Enter value for sex: F
Enter value for age: 18
GENDER: F
AGE: 18
SURCHARGE: .06

PL/SQL procedure successfully completed.

SQL>

Figure 11-12 Simple IF with multiple conditions.

Nested IF. The nested IF statement contains an IF statement within another
IF statement. If the condition in the outer IF statement is TRUE, the inner IF state-
ment is performed. Any IF statement with a compound condition can be written as
a nested IF statement. For example, the program segment in Figure 11-12 assigns an
insurance surcharge based on an individual’s gender and age. There are four cate-
gories:

1. Male 25 or over.

2. Male under 25.

3. Female 25 or over.

4. Female under 25.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 253

254 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

Now, we will rewrite the code done with a simple IF in Figure 11-12 by using
nested IF statements (see Fig. 11-13).Again, remember that the nested IF statement
will make the code more efficient than the simple IF version. The THEN portion of
the outer IF calculates the insurance surcharge for male individuals, and the ELSE
portion calculates the same for the female individuals. The inner IF statements in
each portion check for the age.

Looping Structure

Looping means iterations.A loop repeats a statement or a series of statements a spe-
cific number of times, as defined by the programmer. You would use a loop to repeat
a series of statements many times rather than typing the same statements many

SQL> DECLARE
2 V_GENDER CHAR := ’&SEX’;
3 V_AGE NUMBER (2) := ’&AGE’;
4 V_CHARGE NUMBER (3,2);
5 BEGIN
6 IF (V_GENDER = ’M’) THEN /* MALE */
7 IF (V_AGE >= 25) THEN
8 V_CHARGE := 0.05;
9 ELSE

10 V_CHARGE := 0.10;
11 END IF;
12 ELSE /* FEMALE */
13 IF (V_AGE >= 25) THEN
14 V_CHARGE := 0.03;
15 ELSE
16 V_CHARGE := 0.06;
17 END IF;
18 END IF;
19 DBMS_OUTPUT.PUT_LINE(’GENDER: ’ || V_GENDER);
20 DBMS_OUTPUT.PUT_LINE(’AGE: ’ || TO_CHAR(V_AGE));
21 DBMS_OUTPUT.PUT_LINE(’SURCHARGE: ’||TO_CHAR(V_CHARGE));
22 END;
23 /

Enter value for sex: F
Enter value for age: 18
GENDER: F
AGE: 18
SURCHARGE: .06

PL/SQL procedure successfully completed.

SQL>

Figure 11-13 Nested IF statement.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 254

Control Structures 255

times. Three types of looping statements are available in PL/SQL:

1. Basic loop.
2. WHILE loop.
3. FOR loop.

Each loop has different syntax, and each works somewhat differently.

Basic loop. A basic loop is a loop that is performed repeatedly. Once a
loop is entered, all statements in the loop are performed. When the bottom of the
loop is reached, control shifts back to the top of the loop. The loop will continue in-
finitely.An infinite loop, or a “never-ending loop,” is a logical error in programming.
The only way to terminate a basic loop is by adding an EXIT statement inside the
loop. The general syntax is

LOOP
Looping statement1;
Looping statement2;
. . .
Looping statementN;
EXIT [WHEN condition];

END LOOP;

The EXIT statement in a loop could be an independent statement, or it could
be part of an IF statement. For example,

IF v_count > 10 THEN
EXIT;

END IF;

You can also add a condition with the optional WHEN clause that will end the
loop when the condition becomes true. For example,

EXIT WHEN v_count > 10;

The condition is not checked at the top of the loop, but it is checked inside the
body of the loop. The basic loop is performed at least once, because the condition is
tested after entering the body of the loop. Such a loop is also called a post-test loop.

The example shown in Figure 11-14 uses a counter to control the number of
loop executions. There are three necessary statements in a counter-controlled loop.
The counter must be initialized, the value of the counter must change within the
loop (increment or decrement), and a proper condition must exist in the loop. If
value of the counter is not changed inside the loop, it will result in an infinite loop.
The initial value, the increment/decrement, and the condition control the total num-
ber of loop executions.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 255

256 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

Question: In a basic loop, if the counter is initialized to one and is incre-
mented within the loop by two, and if the condition at the bottom of the
loop body is EXIT WHEN the counter is less than 10, how many times the
loop is performed?

Answer: One time (the loop is performed once and the first check of condi-
tion returns true, so the loop ends). Tricky, isn’t it?

Question: In a basic loop, the counter is initialized to zero and is incre-
mented within the loop by one. How many times will the loop be performed
if the condition at the bottom of the loop body is EXIT WHEN the count-
er equals five?

Answer: Five times (for counter values equal to 0, 1, 2, 3, and 4).

Question: In a basic loop, the counter is initialized to 10 and is incremented
within the loop by one. How many times will the loop be performed if the
condition at the bottom of the loop body is EXIT WHEN the counter
equals 10?

Answer: The loop is infinite (the condition will never become true).

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 V_COUNT NUMBER(2);
3 V_SUM NUMBER(2) := 0;
4 V_AVG NUMBER(3,1);
5 BEGIN
6 V_COUNT := 1; /* COUNTER INITIALIZED */
7 LOOP
8 V_SUM := V_SUM + V_COUNT;
9 V_COUNT := V_COUNT + 1; /* COUNTER INCREMENTED */

10 EXIT WHEN V_COUNT > 10; /* CONDITION */
11 END LOOP;
12 V_AVG := V_SUM / (V_COUNT -1);
13 DBMS_OUTPUT.PUT_LINE(’AVERAGE OF 1 TO 10 IS ’
14 || TO_CHAR(V_AVG));
15 END;
16 /

AVERAGE OF 1 TO 10 IS 5.5

PL/SQL procedure successfully completed.

SQL>

Figure 11-14 Counter-controlled basic loop.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 256

Control Structures 257

WHILE loop. The WHILE loop is an alternative to the basic loop and is per-
formed as long as the condition is true. It terminates when the condition becomes false.
If the condition is false at the beginning of the loop, the loop is not performed at all.The
WHILE loop does not need an EXIT statement to terminate.The general syntax is

WHILE condition LOOP
Looping statement1;
Looping statement2;
. . .

Looping statement n;
END LOOP;

In Figure 11-15, you see the same average program of Figure 11-14 rewritten
with the WHILE loop.There are obvious differences between the basic loop and the
WHILE loop. Figure 11-16 explains the differences between them.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 V_COUNT NUMBER(2);
3 V_SUM NUMBER(2) := 0;
4 V_AVG NUMBER(3,1);
5 BEGIN
6 V_COUNT := 1; /* COUNTER INITIALIZED */
7 WHILE V_COUNT <= 10 LOOP /* CONDITION */
8 V_SUM := V_SUM + V_COUNT;
9 V_COUNT := V_COUNT + 1; /* COUNTER INCREMENTED */

10 END LOOP;
11 V_AVG := V_SUM / (V_COUNT -1);
12 DBMS_OUTPUT.PUT_LINE
13 (’AVERAGE OF 1 TO 10 IS ’ || TO_CHAR(V_AVG));
14 END;
15 /

AVERAGE OF 1 TO 10 IS 5.5

PL/SQL procedure successfully completed.

SQL>

Figure 11-15 Counter-controlled WHILE loop.

Basic Loop WHILE Loop

It is performed as long as the condition is false. It is performed as long as the condition is true.
It tests the condition inside the loop It checks condition before entering the loop
(post-test loop). (pretest loop).
It is performed at least one time. It is performed zero or more times.
It needs the EXIT statement to terminate. There is no need for an EXIT statement.

Figure 11-16 Differences between a basic loop and a WHILE loop.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 257

258 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

FOR loop. The FOR loop is the simplest loop you can write. Unlike the basic
and WHILE loops, you do not have to initialize, test, and increment/decrement the
loop control variable separately.You do it in the loop’s header.There is no need to use
an EXIT statement, and the counter need not be declared. The counter used in the
loop is implicitly declared as an integer, and it is destroyed on the loop’s termination.
The counter may not be used within the loop body in an assignment statement as a
target variable. The general syntax is

FOR counter IN [REVERSE] lower..upper LOOP
Looping statement1
Looping statement2
. . .

Looping statementN
END LOOP;

The counter varies from the lower value to the upper value, incrementing by
one with every loop execution. The loop can also be used with the counter starting
at a higher value and decrementing by one with every loop execution.The key word
REVERSE is used for varying the counter in the reverse order, or from a higher to
a lower value.

The program in Figure 11-17 does not declare v_count, and there is no condi-
tion or explicit statement to change the counter’s value. The same program with the
counter’s value in reverse order will only change by one line. The FOR statement
will look like

FOR v_count IN REVERSE 1..10 LOOP

SQL> DECLARE
2 V_COUNT NUMBER(2);
3 V_SUM NUMBER(2) := 0;
4 V_AVG NUMBER(3,1);
5 BEGIN
6 FOR V_COUNT IN 1..10 LOOP
7 V_SUM := V_SUM + V_COUNT;
8 END LOOP;
9 V_AVG := V_SUM / 10;

10 DBMS_OUTPUT.PUT_LINE
11 (’AVERAGE OF 1 TO 10 IS ’ || TO_CHAR(V_AVG));
12 END;
13 /

AVERAGE OF 1 TO 10 IS 5.5

PL/SQL procedure successfully completed.

SQL>

Figure 11-17 FOR loop.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 258

Nested Blocks 259

One important point about the loop-control variable is that it is declared, in-
cremented/decremented, and destroyed implicitly, but its value cannot be changed
explicitly within the FOR loop’s body. It cannot be a target variable in an assign-
ment statement.

Nested loops. You can use a loop within another loop. Loops can be nest-
ed to many levels.When the inner loop ends, it does not automatically end the outer
loop enclosing it. You can end an outer loop from within the inner loop by labeling
each loop and then using the EXIT statement. EXIT WHEN exits the current loop,
but EXIT out_loop WHEN also exits the outer loop. The loop labels use the same
naming rules as those used for identifiers.The loops are labeled before the key word
LOOP on the same line or on a separate line. The loop label is enclosed within two
pairs of angle brackets (and). For example,

<<out_loop>>
LOOP

. . .
EXIT WHEN condition;

<<in_loop>>
LOOP

. . .
EXIT out_loop WHEN condition; /* exits out_loop */
EXIT WHEN condition; /*exits in_loops */
. . .

END LOOP in_loop; /* label optional here */
. . .

END LOOP out_loop; /*label optional here */

NESTED BLOCKS

PL/SQL block may contain another PL/SQL block; in other words, PL/SQL blocks
can be nested. The execution starts with the outer block and continues with the
inner block. The variables declared in the outer block are global to the inner block,
and they are accessible in the inner block. The variables declared in the inner block,
however, are not accessible in the outer block. For example,

DECLARE /* Outer block starts here.*/
Var1 NUMBER; /* known to outer and inner*/

BEGIN
. . . /* can use Var1 here */

DECLARE /*Inner block starts here.*/
Var2 NUMBER; /* known to inner block */

BEGIN
. . . /* can use Var1 and Var2 here */

END; /* Inner block ends here.*/
. . . /* can use Var1 here */

END; /* Outer block ends here.*/

 W V

ShahCh11v3.qxd 4/16/04 12:00 PM Page 259

260 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

SQL IN PL/SQL

The PL/SQL statements have control structures for calculations, decision making,
and iterations. You need to use SQL to interface with the Oracle database. When
changes are necessary in the database, SQL can be used to retrieve and change in-
formation. PL/SQL supports all Data Manipulation Language (DML) statements,
such as INSERT, UPDATE, and DELETE. It also supports the Transaction Control
Language statements ROLLBACK, COMMIT, and SAVEPOINT. You can retrieve
data using the data retrieval statement SELECT. A row of data can be used to as-
sign values to variables. More than one row can be retrieved and processed using
cursors (covered in the next chapter). PL/SQL statements can use single-row func-
tions, but group functions are not available for PL/SQL statements. SQL statements
in the PL/SQL block, however, can still utilize those group functions.

PL/SQL does not support Data Definition Language (DDL) statements, such
as CREATE, ALTER, and DROP. The Data Control Language (DCL) statements
GRANT and REVOKE also are not available in PL/SQL.

SELECT Statement in PL/SQL

The SELECT statement retrieves data from Oracle tables.The syntax of SELECT is
different in PL/SQL, however, because it is used to retrieve values from a row into a
list of variables or into a PL/SQL record. The general syntax is

SELECT columnnames
INTO variablenames / RecordName
FROM tablename
WHERE condition;

where columnnames must contain at least one column and may include arithmetic
or string expressions, single-row functions, and group functions. Variablenames must
contain a list of local or host variables to hold values retrieved by the SELECT
clause. The variables are declared either at the prompt or locally under
the DECLARE section (see Fig. 11-18). The recordname is a PL/SQL record (cov-
ered in the next chapter). All the features of SELECT in SQL are available with an
added mandatory INTO clause.

The INTO clause must contain one variable for each value retrieved from the
table. The order and data type of the columns and variables must correspond. The
SELECT statement must return one and only one row. It is your respon-
sibility to code a statement that returns one row of data. If no rows are returned, the
standard exception (error condition) NO_DATA_FOUND occurs. If more than one
row are retrieved, the TOO_MANY_ROWS exception occurs. You will learn more
about exceptions and exception handling in the next chapter.

In Figure 11-18, a few columns from a row of the EMPLOYEE table are re-
trieved into a series of variables. The variables can be declared with data types, but
more appropriately, attribute %TYPE is used to avoid any data-type mismatches.

The SQL statement in PL/SQL ends with a semicolon (;). The INTO clause is
mandatory in a SELECT statement when used in a PL/SQL block. Figure 11-19

 Á INTO

SQL * Plus

ShahCh11v3.qxd 4/16/04 12:00 PM Page 260

SQL IN PL/SQL 261

SQL> DECLARE
2 V_LAST EMPLOYEE.LNAME%TYPE;
3 V_FIRST EMPLOYEE.FNAME%TYPE;
4 V_SAL EMPLOYEE.SALARY%TYPE;
5 BEGIN
6 SELECT LNAME, FNAME, SALARY
7 INTO V_LAST, V_FIRST, V_SAL
8 FROM EMPLOYEE
9 WHERE EMPLOYEEID = 200;

10 DBMS_OUTPUT.PUT_LINE
11 (’EMPLOYEE NAME: ’ || V_FIRST || ’ ’ || V_LAST);
12 DBMS_OUTPUT.PUT_LINE
13 (’SALARY: ’ || TO_CHAR(V_SAL));
14 END;
15 /

EMPLOYEE NAME: Jinku Shaw
SALARY: 24500

PL/SQL procedure successfully completed.

SQL>

Figure 11-18 SELECT-INTO in PL/SQL.

SQL> DECLARE
2 V_ID EMPLOYEE.EMPLOYEEID%TYPE;
3 V_DEPT EMPLOYEE.DEPTID%TYPE := &DEPT_NUM;
4 BEGIN
5 SELECT EMPLOYEEID INTO V_ID
6 FROM EMPLOYEE WHERE DEPTID = V_DEPT;
7 END;
8 /

Enter value for dept_num: 10
DECLARE
*
ERROR at line 1:
ORA-01422: exact fetch returns more than requested number of rows
ORA-06512: at line 5

SQL> /
Enter value for dept_num: 50
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 5

SQL>

Figure 11-19 SELECT with Error.Á INTO

ShahCh11v3.qxd 4/16/04 12:00 PM Page 261

262 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

shows another example that results in exceptions because the SELECT
statement returns either too many rows or no data.

DATA MANIPULATION IN PL/SQL

You can use all DML statements in PL/SQL with the same syntax you used in SQL.
The three DML statements to manipulate data are:

1. The INSERT statement to add a new row in a table.
2. The DELETE statement to remove a row or rows.
3. The UPDATE statement to change values in a row or rows.

INSERT Statement

We will use an INSERT statement to add a new employee in the EMPLOYEE
table. The statement will use sequences created earlier. For simplicity, only a few
columns are used in the statement in Figure 11-20. NEXTVAL uses the next value
from the sequence as the new EmployeeId, and CURRVAL uses the current value
of the department from that sequence. If you also decide to insert today’s date as the
hire date, you could use the SYSDATE function for the value.

 Á INTO

DELETE Statement

We will show the use of the DELETE statement in the PL/SQL block to remove
some rows. Suppose the NamanNavan (N2) Corporation decides to remove the IT
Department. All the employees belonging to that department must be removed

SQL> BEGIN
2 INSERT INTO EMPLOYEE
3 (EMPLOYEEID, LNAME, FNAME, SALARY, DEPTID)
4 VALUES
5 (EMPLOYEE_EMPLOYEEID_SEQ.NEXTVAL, ’RAI’,

6 ’AISH’, 90000, DEPT_DEPTID_SEQ.CURRVAL);
7 COMMIT;
8 END;
9 /

PL/SQL procedure successfully completed.

SQL>

Figure 11-20 INSERT in PL/SQL.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 262

Data Manipulation in PL/SQL 263

from the EMPLOYEE table. Figure 11-21 shows the DELETE statement in
PL/SQL.

UPDATE Statement

The UPDATE statement can be used in a PL/SQL block for modification of data.
The company decides to give a bonus commission to all the employees who are en-
titled to commission. The bonus is 10% of the commission received. Figure 11-22
shows an example of an UPDATE statement in PL/SQL block to modify commission.

SQL> DECLARE
2 V_DEPTID DEPT.DEPTID%TYPE;
3 BEGIN
4 SELECT DEPTID
5 INTO V_DEPTID
6 FROM DEPT
7 WHERE UPPER(DEPTNAME) = ’&DEPT_NAME’
8 DELETE FROM EMPLOYEE
9 WHERE DEPTID = V_DEPTID;

10 COMMIT;
11 END;
12 /

Enter value for dept_name: IT

PL/SQL procedure successfully completed.

SQL>

Figure 11-21 DELETE in PL/SQL.

SQL> DECLARE
2 V_INCREASE NUMBER := &DECIMAL_INCREASE;
3 BEGIN
4 UPDATE EMPLOYEE
5 SET SALARY = SALARY * (1 + V_INCREASE)
6 WHERE EMPLOYEEID = &EMP_ID;
7 COMMIT;
8 END;
9 /

Enter value for decimal_increase: 0.15
Enter value for emp_id: 545

PL/SQL procedure successfully completed.

SQL>

Figure 11-22 UPDATE in PL/SQL.

ShahCh11v3.qxd 4/16/04 12:00 PM Page 263

264 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

TRANSACTION CONTROL STATEMENTS

You know what a transaction is. You also know the transaction control capabilities
in Oracle. (If you don’t remember, review Chapter 9). In Figures 11-18, 11-19, and
11-20, after performing a DML statement, the sample blocks have used a COMMIT
statement. You do not have to commit within a PL/SQL block. If you do decide to
use it, your data will be written to the disk right away, and the locks from those rows
will be released.All transaction control statements are allowed in PL/SQL, and they
are as follows:

� The COMMIT statement to commit the current transaction.
� The SAVEPOINT statement to mark a point in your transaction.
� The ROLLBACK [TO SAVEPOINT n] statement to discard all or part of

the transaction.

IN A NUTSHELL . . .

� The three control structures in PL/SQL are sequence, selection, and looping.
� In a sequence structure, the instructions are performed in a linear order.
� The selection structure involves decision making based on the outcome of a

Boolean expression.
� The looping structure contains a series of instructions that are performed

repeatedly.
� Four selection structure statements in PL/SQL are IF IF,

IF IF, IF IF,
and CASE statements.

� A CASE statement uses a variable as a selector and checks its value in
WHEN clauses.

� A searched CASE statement does not use a variable as a selector, but it
does use conditions in WHEN clauses.

� Boolean expressions or conditions use relational operators
logical operators (AND, OR, and NOT), and other op-

erators (BETWEEN AND, IS NULL, and LIKE).
� It is good practice to add comments to a program and indent statements

within a programming block.
� The three types of loops in PL/SQL are the basic loop, WHILE loop, and

FOR loop.
� The basic loop is performed at least once and for as long as the condition is

false. It is known as a post-test loop. The basic loop needs the EXIT state-
ment to terminate.

. . .
7 , 7 = , 6 , and 6 =2,

1= , 6 7 or != ,

 . . . THEN . . . ELSIF . . . END. . . THEN . . . ELSE . . . END
 . . . THEN . . . END

ShahCh11v3.qxd 4/16/04 12:00 PM Page 264

Exercise Questions 265

� The WHILE loop is performed zero or more times and for as long as the
condition is true. It is a pretest loop. The WHILE loop does not need the
EXIT statement to terminate.

� The FOR loop is the simplest loop to write. It declares a loop-control vari-
able implicitly, and it does not need the EXIT statement to end.

� The nested loop has a loop within a loop.Termination of the inner loop does
not automatically terminate the outer loop. The loops can be labeled and
can be terminated with the EXIT statement.

� PL/SQL programming blocks can also be nested. The variables declared in
the outer block are available in the inner block, but the variables declared in
the inner block are not accessible to the outer block.

� PL/SQL does not interact directly with the Oracle database. SQL is embed-
ded in a PL/SQL block to work with tables.

� DML, data retrieval, and transaction control SQL statements are allowed in
PL/SQL. DDL and DCL statements are not allowed in PL/SQL.

� The group functions are not supported in PL/SQL statements, but they can
be used in SQL statements within a PL/SQL block.

� The SELECT-INTO statement retrieves data from a table into a set of vari-
ables. It must retrieve only one row at a time.

� The INSERT, DELETE, and UPDATE statements in a PL/SQL block are
used to manipulate data in tables.

EXERCISE QUESTIONS

True/False:
1. IF statements are used to repeat a series of instructions.
2. The WHILE loop is always performed at least once.
3. A basic loop is performed as long as the condition is false.
4. The WHILE loop is performed as long as the condition is true.
5. The FOR loop exits when the EXIT statement is encountered.
6. The counter (loop-control variable) used in a FOR loop need not be declared explicitly.
7. The SELECT statement must have a mandatory INTO clause when used in a PL/SQL block.
8. The group functions are not supported in PL/SQL statements, but single-row functions are.
9. The GRANT statement is allowed in a PL/SQL block.

10. When two PL/SQL blocks are nested, the variables declared in the outer block are acces-
sible in the inner block.

Answer the Following Questions:
1. Name and explain the control structures used in PL/SQL programming.
2. What is the difference between IF . . .THEN . . . ELSE . . . END IF and IF . . .THEN . . .

ELSIF . . . END IF statements?

ShahCh11v3.qxd 4/16/04 12:00 PM Page 265

266 Chap. 11 More on PL/SQL: Control Structures and Embedded SQL

3. What is the difference between CASE and searched CASE statements?
4. Give four differences between the basic loop and the WHILE loop.
5. List the SQL statements allowed and not allowed in a PL/SQL block.
6. What is the purpose of a SELECT statement in the PL/SQL block? Explain it with an

example.

Complete the Table for a Counter-Controlled WHILE Loop

LAB ACTIVITY

1. Write a PL/SQL block to find out if a year is a leap year. A leap year is divisible by 4 but
not by 100, or it is divisible by 400. For example, 2000 and 2004 are leap years, but 1900
and 2001 are not leap years. (Hint: The function MOD(n, d) divides n by d and returns
the integer remainder from the operation)

2. Write a PL/SQL block to print all odd numbers between 1 and 10 using a basic loop.
3. Using a FOR loop, print the values 10 to 1 in reverse order.
4. Create a table called ITEM with one column called ItemNum with the NUMBER type.

Write a PL/SQL program to insert values of one to five for ItemNum.
5. Input a number with a substitution variable, and then print its multiplication table using

a WHILE loop.
6. Input a month number between 1 and 12 and a four-digit year, and print the number of

days in that month. For February check for a leap year to display the num-
ber of days as equal to 28 or 29.

7. Use a PL/SQL block to delete item number 4 from the ITEM table created in lab activity 4.
8. Write a PL/SQL block to ask a user to input a valid employee Id. Retrieve the employ-

ee’s name, qualification description, salary, and commission. Print the name, qualification,
and sum of the salary and commission.

9. You went to a video store and rented a DVD that is due in 3 days from the rental date.
Input the rental date, rental month, and rental year. Caclculate and print the return date,
return month, and return year. For example,

1month = 22,

Initial Value of Counter Condition Increment/Decrement Number of Loop Executions

1 1

0 5

10

1 1

0 26 = 10

7 = 7

-17 = 5

6 = 100

610

Rental Date Rental Month Rental Year Return Date Return Month Return Year
2 12 2003 5 12 2003

27 2 2000 1 3 2000
30 12 2003 2 1 2004

ShahCh11v3.qxd 4/16/04 12:00 PM Page 266

12

PL/SQL Cursors

and Exceptions

IN THIS CHAPTER . . .

� You will learn about a private work area for an SQL statement and its active
set, called a cursor.

� You will be introduced to implicit and explicit cursor types.
� You will perform open, fetch, and close actions on explicit cursors.
� Use of cursor FOR loops and its implied statements are explained.
� Cursors with parameters and variable cursors are introduced.
� PL/SQL errors, known as exceptions, and their types are discussed.
� The process of declaring, raising, and handling different types of exceptions

is covered.

In previous chapters, you learned about different control structures: sequence, se-
lection, and looping. All structured programming languages support these struc-
tures. Other statements are also available in most of the languages. One of these
additional statements is the GOTO statement, which allows you to branch uncondi-
tionally.All you have to code is GOTO and the control shifts to the
statement after the label. The GOTO statement, though available, is not preferred,
however, because of its nonstructured nature. You also know how to use an SQL
statement within a PL/SQL block for data retrieval, data manipulation, and transac-
tion control.

 V labelname W ,

ShahCh12v3.qxd 4/16/04 12:01 PM Page 267

268 Chap. 12 PL/SQL Cursors and Exceptions

In this chapter, you will learn about some advanced features of PL/SQL, such
as retrieving more than one row from a database into a work area called a cursor.
One of the strongest benefits of PL/SQL is its error-handling capabilities. The error
conditions, known as exceptions, in PL/SQL, are also covered in this chapter.

CURSORS

When you execute an SQL statement from a PL/SQL block, Oracle assigns a private
work area for that statement. The work area, called a cursor, stores the statement
and the results returned by execution of that statement. A cursor is created either
implicitly or explicitly by you.

Types of Cursors

The cursor in PL/SQL is of two types:

1. In a static cursor, the contents are known at compile time. The cursor ob-
ject for such an SQL statement is always based on one SQL statement.

2. In a dynamic cursor, a cursor variable that can change its value is used.
The variable can refer to different SQL statements at different times.

This chapter covers static cursors in detail. It also introduces you to the new
concept of dynamic cursors using a cursor variable. The static cursors are of two
types as well:

1. You do not declare an implicit cursor. PL/SQL declares, manages, and
closes it for every Data Manipulation Language (DML) statement, such
as INSERT, UPDATE, or DELETE.

2. You declare an explicit cursor when you have an SQL statement in a
PL/SQL block that returns more than one row from an underlying table.
The rows retrieved by such a statement into an explicit cursor make up the
active set.When opened, the cursor points to the first row in the active set.
You can retrieve and work with one row at a time from the active set.With
every fetch of a row, the pointer moves to the next row. The cursor returns
the current row to which it is pointing.

IMPLICIT CURSORS

PL/SQL creates an implicit cursor when an SQL statement is executed from within
the program block. The implicit cursor is created only if an explicit cursor is not at-
tached to that SQL statement. Oracle opens an implicit cursor, and the pointer is set
to the first (and the only) row in the cursor. Then, the SQL statement is fetched and
executed by the SQL engine on the Oracle server. The PL/SQL engine closes the

ShahCh12v3.qxd 4/16/04 12:01 PM Page 268

Explicit Cursors 269

implicit cursor automatically. A programmer cannot perform on an implicit cursor all
the operations that are possible on explicit cursor statements. PL/SQL creates an im-
plicit cursor for each DML statement in PL/SQL code.You cannot use an explicit cur-
sor for DML statements. You can choose to declare an explicit cursor for a SELECT
statement that returns only one row of data, but if you don’t declare an explicit cursor
for a SELECT statement returning one row of data, an implicit cursor is created for it.

You have no control over an implicit cursor. The implied queries perform op-
erations on implicit cursors. PL/SQL actually tries to fetch twice to make sure that a
TOO_MANY_ROWS exception does not exist. The explicit cursor is more effi-
cient, because it does not try that extra fetch. It is possible to use an explicit cursor
for a SELECT statement that returns just one row, because you have control over it.
For example,

CURSOR deptname_cur IS
SELECT DeptName, Location FROM dept WHERE DeptId = 10;

Here, only one row is retrieved by the cursor with two column values, Finance and
Charlotte, which later can be assigned to variables by fetching that row.

EXPLICIT CURSORS

An explicit cursor is declared as a SELECT statement in the PL/SQL block. It is
given a name, and you can use explicit statements to work with it. You have total
control of when to open the cursor, when to fetch a row from it, and when to close it.
There are cursor attributes in PL/SQL to get the status information on explicit cur-
sors. Remember, you can declare an explicit cursor for a SELECT statement that re-
turns one or more rows, but you cannot use an explicit cursor for a DML statement.

Four actions can be performed on an explicit cursor:

1. Declare it.
2. Open it.
3. Fetch row(s) from it.
4. Close it.

Declaring an Explicit Cursor

A cursor is declared as a SELECT statement. The SELECT statement must not
have an INTO clause in a cursor’s declaration. If you want to retrieve rows in a spe-
cific order into a cursor, an ORDER BY clause can be used in the SELECT state-
ment. The general syntax is

DECLARE
CURSOR cursorname IS

SELECT statement;

ShahCh12v3.qxd 4/16/04 12:01 PM Page 269

270 Chap. 12 PL/SQL Cursors and Exceptions

where cursorname is the name of the cursor that follows identifier-naming rules.The
SELECT statement is any valid data-retrieval statement. The cursor declaration is
done in the DECLARE section of the PL/SQL block, but a cursor cannot be used in
programming statements or expressions, as with other variables.

For example, Figures 12-1 and 12-2 show declarations of two cursors. In Figure
12-1, the cursor is based on a SELECT query that will retrieve all rows from the
DEPT table in the work area. In the Figure 12-2, two columns, EmployeeId and
Salary, are selected into the cursor with DeptId equal to 20.

A cursor is based on a SELECT statement, so it is linked to at least one table
from the database.The list that follows can contain the names of columns, local vari-
ables, constants, functions, and bind variables. It is possible for a variable to have the
same name as a column in a table. If you try to use both of them together in a SE-
LECT statement, the column gets higher precedence. Though permitted, it is not
advisable to use the same name for a variable that exists in a column retrieved by
the SELECT statement.

In the next section, we will talk about the actions performed on an explicit cursor.

Actions on Explicit Cursors

Actions are performed on cursors declared in the DECLARE section of the block.
Before rows can be retrieved from a cursor, you must open the cursor.

SQL> DECLARE
2 CURSOR DEPT_CUR
3 IS
4 SELECT *
5 FROM DEPT;
6 BEGIN
7 . . .
8 END;

Figure 12-1 Explicit cursor.

SQL> DECLARE
2 CURSOR EMPLOYEE_CUR
3 IS
4 SELECT EMPLOYEEID, SALARY
5 FROM EMPLOYEE
6 WHERE DEPTID = 20;
7 BEGIN
8 . . .
9 END;

Figure 12-2 Explicit cursor.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 270

Explicit Cursors 271

Opening a Cursor. When a cursor is opened, its SELECT query is executed.
The active set is created using all tables in the query and then restricting to rows that
meet the criteria. The data retrieved by the SELECT query is brought into the cur-
sor or the work area.The cursor points to the first row in the active set. PL/SQL uses
an OPEN statement to open a cursor. The general syntax is

OPEN cursorname;

For example,

OPEN employee_cur;

You must open a cursor that has not been opened in the program block or is
closed to retrieve data into it. If you try to open a cursor that is already open, the fol-
lowing Oracle error message appears:

PLS-06511:PL/SQL: cursor already open

Notice the change in the error message prefix PLS! The errors with prefix ORA are
Oracle database errors, and the errors with prefix PLS are PL/SQL errors.You will
see later how this can be avoided using the cursor attribute %ISOPEN.

Fetching Data from a Cursor. The SELECT statement creates an active
set based on tables in the FROM clause, column names in the SELECT clause, and
rows based on conditions in the WHERE clause. The cursor is a virtual table that
you can work with. You can retrieve a row that the cursor is pointing to, and the val-
ues from that row are retrieved into variables or into a PL/SQL record to perform
processing. After reading values from a row into variables, the cursor pointer moves
to the next row in the active set.The number of variables must match the number of
columns in the row. In PL/SQL, a FETCH statement is used for this action.The gen-
eral syntax is

FETCH cursorname INTO variablelist / recordname;

where variablelist may include a local variable, a table, or a bind variable and
recordname is the name of a record structure. For example,

FETCH employee_cur INTO v_empnum, v_sal;

or

FETCH employee_cur INTO emp_rec;

where emp_rec is declared with %ROWTYPE declaration attribute:

emp_rec employee_cur%ROWTYPE;

In the first example, two columns, EmployeeID and Salary, are retrieved into
v_empnum and v_sal, respectively. The number of items matches the number of
variables in the SELECT statement. The order of items and variables must also
match. The variables should be declared with a %TYPE declaration variable to en-
sure the correct data type. If the number of items in SELECT does not match the
number of variables, it results in the following compiler error:

PLS-00394:wrong number of values in the INTO list of a FETCH statement

ShahCh12v3.qxd 4/16/04 12:01 PM Page 271

272 Chap. 12 PL/SQL Cursors and Exceptions

The second example of FETCH uses a record. A composite data type can be
used for the record instead of the CursorName%ROWTYPE declaration. You will
learn about the record data type in the next chapter.

Suppose you opened a cursor in a PL/SQL block to retrieve data from a table,
and then inserts, deletes, and updates are performed on that table after the OPEN
statement is executed. Oracle enforces read consistency, and the data manipulation
statements are ignored. You will have the same data from the point of execution of
OPEN to the point of execution of CLOSE statements. Changing data in the under-
lying table does not change data in the work area.

Closing a cursor. When you are done with a cursor, you should close it. A
closed cursor can be reopened again. If you terminate your PL/SQL program with-
out closing an open cursor, it will not result in an exception. In fact, the local cursor
declared in a PL/SQL block is closed automatically when the block terminates. It is
a good habit, however, to close an open cursor before terminating the block. There
is a limit to the number of cursors a user may open simultaneously.The default value
is in a parameter called OPEN_CURSORS, which has default value of 50.A user re-
leases memory by closing a cursor. PL/SQL uses the CLOSE statement to close a
cursor. The general syntax is

CLOSE cursorname;

For example,

CLOSE employee_cur;

EXPLICIT CURSOR ATTRIBUTES

Actions can be performed on cursors with OPEN, FETCH, and CLOSE statements.
You can get information about the current status of a cursor or the result of the last
fetch by using cursor attributes. The four explicit cursor attributes are:

%ISOPEN It returns TRUE if the cursor is open; otherwise, it
returns FALSE.

%FOUND It returns TRUE if the last fetch returned a row; other-
wise, it returns FALSE.

%NOTFOUND It returns TRUE if the last fetch did not return a row;
otherwise, it returns FALSE. It complements the
%FOUND attribute.

%ROWCOUNT It returns total number of rows returned.

%ISOPEN

The %ISOPEN attribute is useful in making sure that you do not open a cursor that
is already open. It is also appropriate for making sure that a cursor is open before

ShahCh12v3.qxd 4/16/04 12:01 PM Page 272

Explicit Cursor Attributes 273

trying to fetch from it. For example, Figure 12-3 tests to see if a cursor is open. If it is
not open, already, the cursor is opened. Then, execution continues with a loop and a
fetch in it.

%FOUND

The %FOUND attribute returns a TRUE if the last FETCH returned a row; other-
wise, it returns a FALSE. For example, Figure 12-3 shows a block segment that exits
the loop if a row is not found. The loop continues as long as a row is fetched.

%NOTFOUND

The %NOTFOUND attribute returns a TRUE if the last FETCH did not return a
row; otherwise, it returns a FALSE. It is the opposite of the %FOUND attribute.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 V_LAST EMPLOYEE.LNAME%TYPE;
3 V_FIRST EMPLOYEE.FNAME%TYPE;
4 V_SAL EMPLOYEE.SALARY%TYPE;
5 CURSOR EMPLOYEE_CUR IS
6 SELECT LNAME, FNAME, SALARY
7 FROM EMPLOYEE
8 WHERE DEPTID = 20;
9 BEGIN

10 IF NOT EMPLOYEE_CUR%ISOPEN THEN
11 OPEN EMPLOYEE_CUR;
12 END IF;
13 LOOP
14 FETCH EMPLOYEE_CUR
15 INTO V_LAST, V_FIRST, V_SAL;
16 EXIT WHEN NOT EMPLOYEE_CUR%FOUND;
17 DBMS_OUTPUT.PUT_LINE
18 (V_FIRST || ’ ’ || V_LAST || ’ ’ || V_SAL);
19 END LOOP;
20 DBMS_OUTPUT.PUT_LINE
21 (EMPLOYEE_CUR%ROWCOUNT || ’ EMPLOYEE(S) FOUND’);
22 END;
23 /

Alex McCall 66500
Derek Dev 80000
2 EMPLOYEE(S) FOUND

PL/SQL procedure successfully completed.

SQL>

Figure 12-3 Cursor attributes.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 273

274 Chap. 12 PL/SQL Cursors and Exceptions

The statement

EXIT WHEN NOT employee_cur%FOUND;

can be written as

EXIT WHEN employee_cur%NOTFOUND;

%ROWCOUNT

When a cursor is opened and no fetch is done from it, %ROWCOUNT is equal to
zero. With every fetch, %ROWCOUNT is incremented by one. The cursor must be
open before using %ROWCOUNT on it. For example, the code in Figure 12-3 goes
through the loop as long as a row is fetched. A count of the number of rows fetched
is kept by the PL/SQL engine. In the code, we are printing the total number of rows
fetched by the cursor at the end.

IMPLICIT CURSOR ATTRIBUTES

An implicit cursor cannot be opened, fetched from, or closed with a statement. You
do not name implicit cursors. The cursor attributes are available for an implicit cur-
sor with the name SQL as a prefix. The four attributes for a implicit cursor are:

1. SQL%ISOPEN.
2. SQL%ROWCOUNT.
3. SQL%NOTFOUND.
4. SQL%FOUND.

If an implicit cursor is not open, SQL%ROWCOUNT will return NULL. Sim-
ilarly, the other three attributes will return FALSE. You will never get an IN-
VALID_CURSOR error for an implicit cursor.The %ISOPEN attribute will always
return FALSE, because it is open only during the statement’s execution. It is opened
and closed implicitly. When a SELECT statement returns either no or more than
one row, the NO_DATA_FOUND or TOO_MANY_ROWS exception, respective-
ly, is raised. The cursor attribute SQL applies to the last SQL statement executed in
the block.

CURSOR FOR LOOPS

The cursor FOR loop is the easiest way to write a loop for explicit cursors. The cur-
sor is opened implicitly when the loop starts. A row is then fetched into the record
from the cursor with every iteration of the loop. The cursor is closed automatically
when the loop ends, and the loop ends when there are no more rows. The cursor

ShahCh12v3.qxd 4/16/04 12:01 PM Page 274

Cursor FOR Loops 275

FOR loop automates all the cursor actions. The general syntax is

FOR recordname IN cursorname LOOP
Loop statements;
. . .

END LOOP;

where recordname is the name of the record that is declared implicitly in the loop
and is destroyed when the loop ends and cursorname is the name of declared ex-
plicit cursor.

Figure 12-4 uses a Cursor FOR loop with a record. When the loop starts, the
cursor is opened implicitly. During the loop execution, an implicit fetch retrieves a
row into the record for processing with each loop iteration. When an implicit fetch
cannot retrieve a row, the cursor is closed, and the loop terminates. The OPEN,
FETCH, and CLOSE statements are missing, because these operations are per-
formed implicitly.The record’s columns are addressed with recordname.columnname
notation. If the record is accessed after the END LOOP statement, it will throw an
exception, because the record’s scope is only within the loop body.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 CURSOR EMPLOYEE_CUR IS
3 SELECT LNAME, FNAME, SALARY
4 FROM EMPLOYEE;
5 BEGIN
6 FOR EMP_REC IN EMPLOYEE_CUR LOOP
7 IF EMP_REC.SALARY > 75000 THEN
8 DBMS_OUTPUT.PUT(EMP_REC.FNAME || ’ ’);
9 DBMS_OUTPUT.PUT(EMP_REC.LNAME || ’ ’);

10 DBMS_OUTPUT.PUT_LINE(EMP_REC.SALARY || ’ ’);
11 END IF;
12 END LOOP;
13 END;
14 /

John Smith 265000
Larry Houston 150000
Derek Dev 80000

PL/SQL procedure successfully completed.

SQL>

Figure 12-4 Cursor FOR Loop.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 275

276 Chap. 12 PL/SQL Cursors and Exceptions

Cursor FOR Loop Using a Subquery

Use of a subquery in the cursor FOR loop eliminates declaration of an explicit cursor.
The cursor is created by a subquery in the FOR loop statement itself. In Figure 12-5,
an explicit cursor is used with implicit actions. One thing that is missing is the cursor
name. The cursor declaration is not necessary, because it is created through the sub-
query. This subquery is similar to the inline view covered in the SQL section of this
text.

SELECT . . . FOR UPDATE CURSOR

When you type a SELECT query, the result is returned to you without locking any
rows in the table. Row locking is kept to a minimum.You can explicitly lock rows for
update before changing them in the program. The FOR UPDATE clause is used
with the SELECT query for row locking. The locked rows are not available to other
users for DML statements until you release them with COMMIT or ROLLBACK
commands. Rows that are locked for update do not have to be updated. The general
syntax is

CURSOR cursorname IS
SELECT columnnames
FROM tablename(s)
[WHERE condition]
FOR UPDATE [OF columnnames] [NOWAIT];

SQL> BEGIN
2 FOR EMP_REC IN
3 (SELECT FNAME, LNAME, SALARY, COMMISSION
4 FROM EMPLOYEE
5 WHERE DEPTID = 10) LOOP
6 DBMS_OUTPUT.PUT_LINE
7 (EMP_REC.FNAME || ’ ’ || EMP_REC.LNAME || ’ $’ ||
8 TO_CHAR(EMP_REC.SALARY + NVL(EMP_REC.COMMISSION, 0)));
9 END LOOP;

10 END;
11 /

John Smith $300000
Sandi Roberts $75000
Sunny Chen $35000

PL/SQL procedure successfully completed.

SQL>

Figure 12-5 Cursor FOR loop with a subquery.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 276

Cursor with Parameters 277

The optional part of a FOR UPDATE clause is OF columnnames, which en-
ables you to specify columns to be updated. You can actually update any column in
a locked row. The optional word NOWAIT tells you right away if another user has
already locked the table and lets you continue with other tasks. If you do not use
NOWAIT and one or more rows are already locked by another user, you will have
to wait until the lock is released. If you have granted UPDATE privilege to another
user on your table, that user can prevent you from performing DML operations on
your own table by locking them indefinitely!

WHERE CURRENT OF CLAUSE

In a cursor, data manipulation in the form of UPDATE or DELETE is performed
on rows fetched. The WHERE CURRENT OF clause allows you to perform data
manipulation only on a recently fetched row. The general syntax is

UPDATE tablename
SET clause
WHERE CURRENT OF cursorname;_______________________________
DELETE FROM tablename
WHERE CURRENT OF cursorname;

You do not have to use a separate WHERE condition. The WHERE CURRENT
OF clause references the cursor, and changes apply to only the last fetched row.

CURSOR WITH PARAMETERS

A cursor can be declared with parameters, which allow you to pass values to the cur-
sor.These values are passed to the cursor when it is opened, and they are used in the
query when it is executed.With the use of parameters, you can open and close a cur-
sor many times with different values. The cursor with different values will then re-
turn different active sets each time it is opened. When parameters are passed, you
need not worry about the scope of variables. The general syntax is

CURSOR cursorname
[(parameter1 datatype, parameter2 datatype, . . .)]

IS
SELECT query;

where parameter1, parameter2, and so on are formal parameters passed to the cursor
and datatype is any scalar data type assigned to the parameter. The parameters are
assigned only data types; they are not assigned size.

When a cursor is opened, values are passed to the cursor. Each value must
match the positional order of the parameters in a cursor’s declaration. The values

ShahCh12v3.qxd 4/16/04 12:01 PM Page 277

278 Chap. 12 PL/SQL Cursors and Exceptions

can be passed through literals, PL/SQL variables, or bind variables. The parameters
in a cursor are passed in to the cursor, but you cannot pass any value out of the cur-
sor through parameters.

For example, in the PL/SQL program of Figure 12-6, the cursor employee_cur
is declared with a parameter dept_num, which is also used in the cursor SELECT
statement’s WHERE clause.When the program executes, it asks to input a value for
department number with substitution variable DEPARTMENT_ID, which is as-
signed to variable D_ID. The cursor is opened with parameter D_ID, which has
value of 10 as entered by the user.The format parameter DEPT_NUM gets value of
parameter D_ID. The active set is created based on
Then, the cursor loop prints all employees for department number 10. The parameter
can be passed a value with a literal (as done in here), a bind variable, or an expression.

DEPTID = DEPT_NUM.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 V_FIRST EMPLOYEE.FNAME%TYPE;
3 V_LAST EMPLOYEE.LNAME%TYPE;
4 D_ID NUMBER(2) := &DEPARTMENT_ID;
5 CURSOR EMPLOYEE_CUR (DEPT_NUM EMPLOYEE.DEPTID%TYPE) IS
6 SELECT LNAME, FNAME
7 FROM EMPLOYEE
8 WHERE DEPTID = DEPT_NUM;
9

10 BEGIN
11 OPEN EMPLOYEE_CUR(D_ID);
12 DBMS_OUTPUT.PUT_LINE
13 (’EMPLOYEES IN DEPARTMENT ’ || TO_CHAR(D_ID));
14 LOOP
15 FETCH EMPLOYEE_CUR INTO V_LAST, V_FIRST;
16 EXIT WHEN EMPLOYEE_CUR%NOTFOUND;
17 DBMS_OUTPUT.PUT_LINE(V_LAST || ’, ’ || V_FIRST);
18 END LOOP;
19 CLOSE EMPLOYEE_CUR;
20 END;
21 /

Enter value for department_id: 10
EMPLOYEES IN DEPARTMENT 10
Smith, John
Roberts, Sandi
Chen, Sunny

PL/SQL procedure successfully completed.

SQL>

Figure 12-6 Cursor with Parameter.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 278

Cursor Variables: An Introduction 279

A cursor with a parameter can be opened multiple times with a different parameter
value to get a different active set.

When you declare a cursor with one or more parameters, you can initialize it
to a default value as follows:

CURSOR employee_cur (dept_id employee.DeptId%TYPE := 99) IS

CURSOR VARIABLES: AN INTRODUCTION

An explicit cursor is the name of the work area for an active set.A cursor variable is
a reference to the work area. A cursor is based on one specific query, whereas a cur-
sor variable can be opened with different queries within a program. A static cursor
is like a constant, and a cursor variable is like a pointer to that cursor. You can also
use the action statements OPEN, FETCH, and CLOSE with cursor variables. The
cursor attributes %ISOPEN, %FOUND, %NOTFOUND, and %ROWCOUNT
are available for cursor variables. Cursor variables have many similarities with stat-
ic cursors.

The cursor variable has other capabilities in addition to the features of a static
cursor. It is a variable, so it can be used in an assignment statement. A cursor vari-
able can also be assigned to another cursor variable.

REF CURSOR Type

Two steps are involved in creating a cursor variable. First, you have to create a ref-
erenced cursor type. Second, you have to declare an actual cursor variable with the
referenced cursor type. The general syntax is

TYPE cursortypename IS REF CURSOR [RETURN returntype];
cursorvarname cursortypename;

where cursortypename is the name of the type of cursor.The RETURN clause is op-
tional.The returntype is the RETURN data type and can be any valid data structure,
such as a record or structure defined with %ROWTYPE. For example,

TYPE any_cursor_type IS REF CURSOR;
any_cursor_var any_cursor_type;
TYPE employee_cursor_type IS REF CURSOR

RETURN employee%ROWTYPE;
employee_cursor_var employee_cursor_type;

In this example, the first cursor type, any_cursor_type, is called the weak type,
because its RETURN clause is missing. This type of cursor type can be used with
any query. The cursor type declared with the RETURN clause is called the strong
type, because it links a row type to the cursor type at the declaration time.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 279

280 Chap. 12 PL/SQL Cursors and Exceptions

Opening a Cursor Variable

You assign a cursor to the cursor variable when you OPEN it. The general syntax is

OPEN cursorname / cursorvarname FOR SELECT query;

If the cursor type is declared with the RETURN clause, the structure from the SE-
LECT query must match the structure specified in the REF CURSOR declaration.
For example,

OPEN employee_cursor_var FOR SELECT * FROM employee;

The structure returned by the SELECT query matches the RETURN type employ-
ee%ROWTYPE.

The other cursor type, any_cursor_type, is declared without the RETURN
clause. It can be opened without any worry about matching the query’s result to
anything. The weak type is more flexible than the strong type, but there is no error
checking. Let us look at some OPEN statements for the weak cursor variable:

OPEN any_cursor_var FOR SELECT * FROM dept;
OPEN any_cursor_var FOR SELECT * FROM employee;
OPEN any_cursor_var FOR SELECT DeptId FROM dept;

It is possible to have all three statements in one program block. The cursor variable
assumes different structures with each OPEN.

Fetching from a Cursor Variable

The fetching action is same as that of a cursor. The compiler checks the data struc-
ture type after the INTO clause to see if it matches the query linked to the cursor.
The general syntax is

FETCH cursorvarname INTO recordname / variablelist;

(Note: At the end of this chapter, under More Sample Programs, are three more
coding examples on cursors.)

EXCEPTIONS

In PL/SQL, errors are known as exceptions.An exception occurs when an unwanted
situation arises during the execution of a program. Exceptions can result from a sys-
tem error, a user error, or an application error.When an exception occurs, control of
the current program block shifts to another section of the program, known as the
exception section, to handle exceptions. If the exception handler exists, it is per-
formed. If the exception handler does not exist in the current block, control propa-
gates to the outer blocks. If the handler is not in any of the blocks, PL/SQL returns
an error, and the script stops.

A programmer writes a program to perform certain tasks, keeping only the pos-
itive things in mind. Programming is more than just writing statements to perform a

ShahCh12v3.qxd 4/16/04 12:01 PM Page 280

Types of Exceptions 281

task, however.A programmer must think of all the negative situations that may arise
while the program is executed. For example, the system might run out of memory, the
database might not be accessible, or the user might type in the wrong value or press
the wrong key.The programmer must put extra effort into program design to remove
bugs and make the program error-proof with additional code to perform in case of
exceptions. PL/SQL provides ways to trap and handle errors, and it is possible to cre-
ate PL/SQL programs with full protection against errors. When exception-handling
code is written for an exception, that exception can occur anywhere in the block, and
the same handler can deal with it.

The syntax of an anonymous block is given below. Control transfers from the
execution section to the exception section. PL/SQL browses through the section to
look for the handler. If the handler is present, it is executed. The program may have
more than one exception handler, written with WHEN THEN statements like an
ELSIF or CASE structure (as supported by Oracle9i). For example,

DECLARE
Declaration of constants, variables, cursors, and exceptions

BEGIN
/* Exception is raised here.*/
EXCEPTION
/* Exception is trapped here.*/
END;

The general syntax of an exception section is:

EXCEPTION
WHEN exceptionname1 [OR exceptionname2, . . .] THEN

Executable statements
[WHEN exceptionname3 [OR exceptionname4, . . .] THEN

Executable statements]
[WHEN OTHERS THEN

Executable statements]

An exception is handled when the exception name matches the name of the
raised exception. The exceptions are trapped by name. If an exception is raised but
no handler for it is present, the WHEN OTHERS clause is performed (if present). If
there is no handler for an exception and no WHEN OTHERS clause, the error
number and associated message are displayed to the user.

TYPES OF EXCEPTIONS

There are three types of exceptions in PL/SQL:

1. Predefined Oracle server exceptions are exceptions that are named by
PL/SQL and are raised implicitly when a PL/SQL or DBMS error occurs.

. . .

ShahCh12v3.qxd 4/16/04 12:01 PM Page 281

282 Chap. 12 PL/SQL Cursors and Exceptions

There are approximately 20 such exceptions. Each has a name and associ-
ated error number.

2. Nonpredefined Oracle server exceptions are standard Oracle server er-
rors that are not named by the system. They can be declared in the decla-
ration section but are raised implicitly by the server. These exceptions do
not have a name, but they do have an associated error number.

3. User-defined exceptions are exceptions that are declared in the declara-
tion section and are raised by the user explicitly. The user decides which
abnormal condition is an exception. The Oracle server does not consider
these conditions to be errors.

Predefined Oracle Server Exceptions

Exceptions that are given names by PL/SQL are declared in a PL/SQL package
called STANDARD. The exception-handling routine is also defined there. The user
does not have to declare or raise predefined server exceptions. Figure 12-7 provides
the exception name, the error code returned by the built-in function SQLCODE,
and a brief description of the exception.

Exception Name Error Number Brief Description

NO_DATA_FOUND ORA-01403 Single-row SELECT returned no data.
TOO_MANY_ROWS ORA-01422 Single-row SELECT returned more than one row.
ZERO_DIVIDE ORA-01476 Attempted to divide by zero.
VALUE_ERROR ORA-06502 Arithmetic, conversion, truncation, or size constraint

error occurred.
STORAGE_ERROR ORA-06500 PL/SQL ran out of memory, or memory is corrupted.
LOGIN_DENIED ORA-01017 Logging on to Oracle with an invalid username or

password.
NOT_LOGGED_ON ORA-01012 PL/SQL program issues a database call without

being connected to Oracle.
PROGRAM_ERROR ORA-06501 PL/SQL has an internal problem.
ACCESS_INTO_NULL ORA-06530 Attempted to assign values to the attributes of an

uninitialized object.
CURSOR_ALREADY_OPEN ORA-06511 Attempted to open an already-open cursor.
DUP_VAL_ON_INDEX ORA-00001 Attempted to insert a duplicate value.
INVALID_CURSOR ORA-01001 Illegal cursor operation occurred.
INVALID_NUMBER ORA-01722 Conversion of a character string to number failed.
ROWTYPE_MISMATCH ORA-06504 Host cursor variable and PL/SQL cursor variable

involved in an assignment have incompatible
return types.

TIMEOUT_ON_RESOURCE ORA-00051 Time-out occurred while Oracle is waiting
for a resource.

Figure 12-7 Predefined/named system exceptions.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 282

Types of Exceptions 283

Suppose a program block generates an error message for exception error
number ORA-01403 that is not handled by the exception section. The error has oc-
curred because of a SELECT statement that did not return any data. You can write
an exception handler as shown in Figure 12-8.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 V_FIRST EMPLOYEE.FNAME%TYPE;
3 V_LAST EMPLOYEE.LNAME%TYPE;
4 D_ID NUMBER(2) := &DEPARTMENT_ID;
5 BEGIN
6 SELECT LNAME, FNAME
7 INTO V_LAST, V_FIRST
8 FROM EMPLOYEE
9 WHERE DEPTID = D_ID;

10 DBMS_OUTPUT.PUT_LINE(’ ’);
11 DBMS_OUTPUT.PUT_LINE(V_LAST || ’, ’ || V_FIRST);
12 EXCEPTION
13 WHEN NO_DATA_FOUND THEN
14 DBMS_OUTPUT.PUT_LINE
15 (’NO SUCH DEPARTMENT WITH EMPLOYEES’);
16 WHEN TOO_MANY_ROWS THEN
17 DBMS_OUTPUT.PUT_LINE
18 (’MORE THAN ONE EMPLOYEE IN DEPT ’ || D_ID);
19 END;
20 /

Figure 12-8 Handling named exceptions (source).

In Figure 12-8, two named exceptions, NO_DATA_FOUND and
TOO_MANY_ROWS, are handled. The NO_DATA_FOUND exception occurs
when a SELECT INTO statement does not retrieve a row. The TOO_MANY_
ROWS exception occurs when a SELECT INTO statement retrieves more than
one row. Figure 12-9 shows execution of the code in Figure 12-8 to demonstrate han-
dling of both exceptions. Input value 10 returned more than one row, resulting in the
TOO_MANY_ROWS exception, which is raised implicitly and handled. Input
value 50 returned 0 rows, resulting in the NO_DATA_FOUND exception, which is
also raised implicitly and handled by the block. Input value 40 returned one em-
ployee, so no exception was thrown.

Nonpredefined Oracle Server Exceptions

A nonpredefined Oracle server exception has an attached Oracle error code, but it is
not named by Oracle. You can trap such exceptions with a WHEN OTHERS clause
or by declaring them with names in the DECLARE section. The declared exception

. . .
. . .

ShahCh12v3.qxd 4/16/04 12:01 PM Page 283

284 Chap. 12 PL/SQL Cursors and Exceptions

is raised implicitly by Oracle, or you can raise it explicitly. You can write exception-
handler code for it.

Pragma Exception_Init. PRAGMA is a compiler directive that associates
an exception name with an internal Oracle error code. The PRAGMA directive is
not processed with the execution of a PL/SQL block, but it directs the PL/SQL com-
piler to associate a name with the error code. You can use more than one PRAGMA
EXCEPTION_INIT directive in your DECLARE section to assign names to differ-
ent error codes.You may even assign more than one name to the same error number.
Naming an internal error code makes your program more readable.

Naming and associating are two separate statements in the declaration sec-
tion. First, an exception name is declared as an EXCEPTION. Second, the declared
name is associated with an internal error code returned by SQLCODE with the
PRAGMA directive. The general syntax is

exceptionname EXCEPTION;
PRAGMA EXCEPTION_INIT (exceptionname, errornumber);

where exceptionname is user supplied and errornumber is Oracle’s internal error
code. The error code is a numeric literal with a negative sign

Suppose you tried to remove a department from the DEPT table but the child
rows still exist in the EMPLOYEE table, because there are employees with that
DeptId.You will get Oracle error ORA-02292.You can declare an exception and as-
sociate it with the server error code number -2292. Figure 12-10 shows a PL/SQL
block with a declaration and exception trapping of a nonpredefined Oracle excep-
tion. There is no explicit RAISE statement.

1-2.

Enter value for department_id: 10
MORE THAN ONE EMPLOYEE IN DEPT 10

PL/SQL procedure successfully completed.

SQL> /
Enter value for department_id: 50
NO SUCH DEPARTMENT WITH EMPLOYEES

PL/SQL procedure successfully completed.

SQL> /
Enter value for department_id: 40
Houston, Larry

PL/SQL procedure successfully completed.

SQL>

Figure 12-9 Handling named exceptions (output).

ShahCh12v3.qxd 4/16/04 12:01 PM Page 284

Types of Exceptions 285

Exception-Trapping functions. When an exception occurs in your program,
you don’t know the error code for the error and its associated message unless you
take specific action to identify them. Once you know the error code and the mes-
sage, you can modify your program to take action based on the error. The two func-
tions to identify the error code and error message are:

1. SQLCODE. The SQLCODE function returns a negative error code num-
ber. The number can be assigned to a variable of NUMBER type.

2. SQLERRM. The SQLERRM function returns the error message associat-
ed with the error code.The maximum length of error message is 512 bytes.
It can be assigned to a VARCHAR2-type variable.

Figure 12-11 shows the use of SQLCODE and SQLERRM to identify the
error code and message for further modifications of the exception section of a pro-
gram based on information displayed.

SQL> DECLARE
2 emp_remain EXCEPTION;
3 PRAGMA EXCEPTION_INIT (emp_remain, -2292);
4 v_deptid dept.DeptId%TYPE := &p_deptnum;
5 BEGIN
6 DELETE FROM dept
7 WHERE DeptId = v_deptid;
8 COMMIT;
9 EXCEPTION

10 WHEN emp_remain THEN
11 DBMS_OUTPUT.PUT(’DEPARTMENT ’ || TO_CHAR(v_deptid));
12 DBMS_OUTPUT.PUT(’ cannot be removed - ’);
13 DBMS_OUTPUT.PUT_LINE(’Employees in department’);
14 END;
15 /

Enter value for p_deptnum: 10
DEPARTMENT 10 cannot be removed - Employees in department

PL/SQL procedure successfully completed.

SQL> /
Enter value for p_deptnum: 60

PL/SQL procedure successfully completed.

SQL>

Figure 12-10 Nonpredefined Oracle exception.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 285

286 Chap. 12 PL/SQL Cursors and Exceptions

User-Defined Exceptions

The standard errors covered under the previous two types are in the STANDARD
package with an error code and an accompanying message. Often, however, you will
encounter situations that are specific to a given program. For example, a birth date
falls in the future, a quantity in an invoice is negative, a student registers for course
without satisfying prerequisite, and so on.

You are allowed to define your exceptions in PL/SQL. You must perform
three steps for exceptions you want to define:

1. You must declare the exception in the DECLARE section. There is no
need to use a PRAGMA directive, because there is no standard error
number to associate.

2. You must raise the exception in the execution section of the program with
an explicit RAISE statement.

3. You must write the handler for the exception.

SQL> DECLARE
2 V_FIRST EMPLOYEE.FNAME%TYPE;
3 V_LAST EMPLOYEE.LNAME%TYPE;
4 D_ID NUMBER(2) := &DEPARTMENT_ID;
5 V_CODE NUMBER;
6 V_MSG VARCHAR2(255);
7 BEGIN
8 SELECT LNAME, FNAME
9 INTO V_LAST, V_FIRST

10 FROM EMPLOYEE
11 WHERE DEPTID = D_ID;
12 DBMS_OUTPUT.PUT_LINE(’ ’);
13 DBMS_OUTPUT.PUT_LINE(V_LAST || ’, ’ || V_FIRST);
14 EXCEPTION
15 WHEN OTHERS THEN
16 V_CODE := SQLCODE;
17 V_MSG := SQLERRM;
18 DBMS_OUTPUT.PUT_LINE(’ERROR CODE: ’ || SQLCODE);
19 DBMS_OUTPUT.PUT_LINE(SQLERRM);
20 END;
21 /

Enter value for department_id: 10
ERROR CODE: -1422
ORA-01422: exact fetch returns more than requested number of rows

PL/SQL procedure successfully completed.

SQL>

Figure 12-11 SQLCODE and SQLERRM.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 286

Types of Exceptions 287

Figures 12-12 and 12-13 are examples of the user-defined exceptions
invalid_commission and no_commission. The invalid_commission exception is
raised when the commission value is negative. The no_commission exception is
raised when the commission value is NULL. Figure 12-12 shows the source code,
and Figure 12-13 shows exception handling based on the EmployeeId entered by
the user.

RAISE_APPLICATION_ERROR Procedure

The RAISE_APPLICATION_ERROR procedure allows you to display nonstan-
dard error codes and user-defined error messages from a stored subprogram. The
general syntax is

RAISE_APPLICATION_ERROR (error_code, error_message [, TRUE/FALSE];

where the error_code is a user-specified number between and and
error_message is a user-supplied message that can be up to 512 bytes long. The third
Boolean parameter, TRUE/FALSE, is optional. TRUE means “place the error on

-20,999-20,000

SQL> DECLARE
2 invalid_commission EXCEPTION;
3 no_commission EXCEPTION;
4 v_comm employee.Commission%TYPE;
5 BEGIN
6 SELECT Commission
7 INTO v_comm
8 FROM employee
9 WHERE EmployeeId = &emp_id;

10 IF v_comm < 0 then
11 RAISE invalid_commission;
12 ELSIF v_comm IS NULL THEN
13 RAISE no_commission;
14 ELSE
15 DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_comm));
16 END IF;
17 EXCEPTION
18 WHEN invalid_commission THEN
19 DBMS_OUTPUT.PUT_LINE(’Commission is negative.’);
20 WHEN no_commission THEN
21 DBMS_OUTPUT.PUT_LINE(’No commission value’);
22 WHEN OTHERS THEN
23 DBMS_OUTPUT.PUT_LINE(’No such ID’);
24 END;
25 /

Figure 12-12 User-defined exception (source).

ShahCh12v3.qxd 4/16/04 12:01 PM Page 287

288 Chap. 12 PL/SQL Cursors and Exceptions

stack of other errors.” FALSE is the default value, and it replaces all previous errors.
For example,

EXCEPTION
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR

(–20001, ‘Department does not exist’);

You can use a RAISE_APPLICATION_ERROR procedure in the execution
and exception sections of the program. It is very useful in communicating errors be-
tween the client and the server.

In a PL/SQL program with an anonymous block that has nested blocks as well
as procedures and functions, the outermost block nests other blocks and calls the
procedures and functions. Each block can have its own exception-handling section,
and some blocks may not have an exception-handling section. An exception de-
clared in the inner block cannot be raised in the enclosing outer block. If an excep-
tion is declared in the outer block, it can be raised in the block itself or in its inner
subblock.When the exception is raised implicitly or explicitly in an inner block with-
out the exception-handling section, control shifts to the adjacent outer block and
then propagates outward until its handler is found or it ends up being an unhandled
exception.

Enter value for emp_id: 111
35000

PL/SQL procedure successfully completed.

SQL> /
Enter value for emp_id: 123
No commission value

PL/SQL procedure successfully completed.

SQL> /
Enter value for emp_id: 546
Commission is negative.

PL/SQL procedure successfully completed.

SQL> /
Enter value for emp_id: 321
No such ID

PL/SQL procedure successfully completed.

SQL>

Figure 12-13 User-defined exception (output).

ShahCh12v3.qxd 4/16/04 12:01 PM Page 288

In a Nutshell . . . 289

The RAISE statement is very much like the GOTO statement. They both
branch to another part of the program. The difference is that the RAISE statement
branches to the exception section, whereas the GOTO statement branches to an-
other statement in an executable block.

MORE SAMPLE PROGRAMS

In this section, you will see the PL/SQL blocks based on the topics covered in this
chapter, such as an explicit cursor, a cursor FOR loop, a cursor with parameters,
and exception handling. The code in Figure 12-14 uses an explicit cursor emp_cur.
The active set contains the employee’s last name, first name, salary, and commis-
sion. The WHILE loop is used to work with one row at a time. Within the loop, an
employee’s salary and commission are added together to find the total income.
Also, note the use of a single-row function NVL in case the commission value is
NULL. Finally, total company wages (the total of all employee salaries and com-
missions) are printed.

When the program in Figure 12-15 is executed, you will be prompted to enter
the date for the substitution variable p_date. When the cursor is opened with v_date
as a parameter, it will retrieve rows that have HireDate after the inputted date. The
information for those employees will be printed. The program also will display the
total number of employees selected.

The program in Figure 12-16 selects employees with PositionId of 2 who are
managers. It locks those rows for future update. Using a cursor FOR loop, each
manager’s salary is modified to give a 7% raise. The WHERE CURRENT OF
clause is used to modify the current row fetched. The rows are released with the
COMMIT command.

The program in Figure 12-17 displays two customized prompts for an employ-
ee’s ID and the percentage increment/raise. First, rows are locked with the FOR
UPDATE clause. The UPDATE statement changes the salary if the ID is correct. If
the employee ID does not exist, a standard exception is raised implicitly. The excep-
tion is handled by displaying an appropriate message.

IN A NUTSHELL . . .

� A cursor is a private work area to store a statement and its active set.
� A static cursor’s contents are known at compile time, and a dynamic cursor

uses a cursor variable, which can refer to different SQL statements at differ-
ent times.

� An implicit cursor is declared, managed, and closed by PL/SQL.
� The programmer declares an explicit cursor for a PL/SQL block that returns

more than one row from the table.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 289

290 Chap. 12 PL/SQL Cursors and Exceptions

SQL> SET SERVEROUTPUT ON
SQL> /* program uses a cursor to get employee information.
DOC>Then prints total wages for each employee.
DOC>Program also prints total company wages. */
SQL> DECLARE

2 CURSOR EMP_CUR IS
3 SELECT LNAME, FNAME, SALARY, COMMISSION
4 FROM EMPLOYEE WHERE SALARY IS NOT NULL;
5 V_FIRST EMPLOYEE.FNAME%TYPE;
6 V_LAST EMPLOYEE.LNAME%TYPE;
7 V_SAL EMPLOYEE.SALARY%TYPE;
8 V_COMM EMPLOYEE.COMMISSION%TYPE;
9 V_TOTSAL EMPLOYEE.SALARY%TYPE;

10 V_SUM EMPLOYEE.SALARY%TYPE := 0;
11 BEGIN
12 OPEN EMP_CUR;
13 FETCH EMP_CUR INTO V_LAST, V_FIRST, V_SAL, V_COMM;
14 WHILE EMP_CUR%FOUND LOOP
15 V_TOTSAL := V_SAL + NvL(V_COMM, 0);
16 V_SUM := V_SUM + V_TOTSAL;
17 DBMS_OUTPUT.PUT(V_LAST || ’, ’ || V_FIRST);
18 DBMS_OUTPUT.PUT_LINE
19 (’ makes ’ || TO_CHAR(V_TOTSAL, ’$999,999’));
20 FETCH EMP_CUR INTO V_LAST,V_FIRST,V_SAL,V_COMM;
21 END LOOP;
22 DBMS_OUTPUT.PUT_LINE
23 (’COMPANY WAGES: ’ || TO_CHAR(V_SUM, ’$999,999’));
24 END;
25 /

Smith, John makes $300,000
Houston, Larry makes $160,000
Roberts, Sandi makes $75,000
McCall, Alex makes $66,500
Dev, Derek makes $100,000
Shaw, Jinku makes $27,500
Garner, Stanley makes $50,000
Chen, Sunny makes $35,000
COMPANY WAGES: $814,000

PL/SQL procedure successfully completed.

SQL>

Figure 12-14 Sample program—explicit cursor.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 290

In a Nutshell . . . 291

SQL> SET SERVEROUTPUT ON
SQL> /* Program uses a cursor with a date parameter.
DOC>User inputs a value for the parameter.
DOC>Program displays employees hired after inputted date */
SQL> DECLARE

2 CURSOR EMP_CUR(START_DATE DATE) IS
3 SELECT LNAME, FNAME, HIREDATE, DEPTNAME
4 FROM EMPLOYEE E, DEPT D
5 WHERE HIREDATE > START_DATE AND D.DEPTID=E.DEPTID;
6 V_FIRST EMPLOYEE.FNAME%TYPE;
7 V_LAST EMPLOYEE.LNAME%TYPE;
8 V_HIRE EMPLOYEE.HIREDATE%TYPE;
9 V_DEPT DEPT.DEPTNAME%TYPE;

10 V_DATE EMPLOYEE.HIREDATE%TYPE := ’&P_DATE’;
11 BEGIN
12 OPEN EMP_CUR(V_DATE);
13 FETCH EMP_CUR INTO V_LAST, V_FIRST, V_HIRE, V_DEPT;
14 WHILE EMP_CUR%FOUND LOOP
15 DBMS_OUTPUT.PUT(V_LAST || ’, ’ || V_FIRST);
16 DBMS_OUTPUT.PUT
17 (’ was hired on ’ || TO_CHAR(V_HIRE, ’MM/DD/YYYY’));
18 DBMS_OUTPUT.PUT_LINE(’ in ’ || V_DEPT ||’ department’);
19 FETCH EMP_CUR INTO V_LAST, V_FIRST, V_HIRE, V_DEPT;
20 END LOOP;
21 DBMS_OUTPUT.PUT_LINE
22 (’TOTAL EMPLOYEES: ’ || EMP_CUR%ROWCOUNT);
23 CLOSE EMP_CUR;
24 END;
25 /

Enter value for p_date: 31-DEC-1995
McCall, Alex was hired on 05/10/1997 in InfoSys department
Shaw, Jinku was hired on 01/03/2000 in Sales department
Garner, Stanley was hired on 02/29/1996 in Sales department
Chen, Sunny was hired on 08/15/1999 in Finance department
TOTAL EMPLOYEES: 4

PL/SQL procedure successfully completed.

SQL>

Figure 12-15 Sample program—cursor with parameter.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 291

292 Chap. 12 PL/SQL Cursors and Exceptions

SQL> /* Program uses a cursor to update salaries for any one
DOC>position. It locks rows with FOR UPDATE clause.
DOC>It updates row fetched with WHERE CURRENT OF clause */
SQL> DECLARE

2 CURSOR SAL_CUR IS
3 SELECT LNAME, SALARY
4 FROM EMPLOYEE
5 WHERE POSITIONID =
6 (SELECT POSITIONID FROM POSITION
7 WHERE UPPER(POSDESC) = ’&POSITION’)
8 FOR UPDATE;
9 BEGIN

10 FOR SAL_REC IN SAL_CUR LOOP
11 UPDATE EMPLOYEE
12 SET SALARY = SALARY * 1.07
13 WHERE CURRENT OF SAL_CUR;
14 END LOOP;
15 -- COMMIT; /* can be uncommented for immediate update */
16 END;
17 /

Enter value for position: MANAGER

PL/SQL procedure successfully completed.

SQL>

Figure 12-16 Sample program—cursor FOR loop and WHERE CURRENT OF.

� Four actions are performed on explicit cursors: DECLARE, OPEN, FETCH,
and CLOSE.

� The cursor attributes %ISOPEN, %FOUND, %NOTFOUND, and %ROW-
COUNT give the status of the cursor.

� The cursor attributes that are used with an implicit cursor have SQL as a
qualifier or a prefix (e.g., SQL%ISOPEN).

� A cursor FOR loop implicitly opens, fetches, and closes a cursor.
� An explicit cursor does not need to be declared if the cursor FOR loop uses

a subquery to create a cursor.
� The SELECT FOR UPDATE statement is used with a cursor to lock

rows for future updates. These rows are released with a COMMIT or
ROLLBACK statement.

� The WHERE CURRENT OF clause allows you to perform data manipula-
tion on a recently fetched row.

� A cursor with parameters enables you to pass values to the cursor.

. . .

ShahCh12v3.qxd 4/16/04 12:01 PM Page 292

In a Nutshell . . . 293

SQL> /* Program prompts user for employeeid and percentage rise.
DOC>If employeeid does not exist, exception is raised and handled */
SQL> DECLARE

2 V_EMPID EMPLOYEE.EMPLOYEEID%TYPE;
3 V_SAL EMPLOYEE.SALARY%TYPE;
4 V_RAISE NUMBER(3,2) := &P_RAISE;
5 BEGIN
6 SELECT EMPLOYEEID, SALARY
7 INTO V_EMPID, V_SAL FROM EMPLOYEE
8 WHERE EMPLOYEEID = &P_EMPID FOR UPDATE NOWAIT;
9 UPDATE EMPLOYEE

10 SET SALARY = SALARY + SALARY * V_RAISE
11 WHERE EMPLOYEEID = V_EMPID;
12 DBMS_OUTPUT.PUT_LINE(’SALARY UPDATED FOR EMPLOYEE ’ || V_EMPID);
13 EXCEPTION
14 WHEN NO_DATA_FOUND THEN
15 DBMS_OUTPUT.PUT_LINE(’NO SUCH EMPLOYEEID IN TABLE’);
16 END;
17 /

Enter value for p_raise: 0.05
Enter value for p_empid: 999
NO SUCH EMPLOYEEID IN TABLE

PL/SQL procedure successfully completed.

SQL> /
Enter value for p_raise: 0.10
Enter value for p_empid: 111
SALARY UPDATED FOR EMPLOYEE 111

PL/SQL procedure successfully completed.

SQL>

Figure 12-17 Sample program—exception handling.

� A cursor variable can be opened with different queries within the same pro-
gram. All action statements and cursor attributes can be used with a cursor
variable.

� PL/SQL errors are called exceptions, and they are handled in the exception
section of the PL/SQL block.

� Three types of exceptions are predefined Oracle server exceptions, nonpre-
defined Oracle server exceptions, and user-defined exceptions.

� Predefined Oracle server exceptions are declared in the Oracle package
called STANDARD. There are approximately 20 such exceptions.

ShahCh12v3.qxd 4/16/04 12:01 PM Page 293

294 Chap. 12 PL/SQL Cursors and Exceptions

� Nonpredefined Oracle server exceptions are declared with a PRAGMA
EXCEPTION_INIT directive to associate an exception name with a stan-
dard error code.

� User-defined exceptions are declared, raised, and handled explicitly.
� The exception-trapping functions SQLCODE and SQLERRM return an

error code and the associated error message, respectively.

EXERCISE QUESTIONS

True/False:
1. A cursor variable is a dynamic cursor that can refer to different SQL statements at dif-

ferent times.
2. An implicit cursor is used when an SQL statement in the PL/SQL block returns more

than one row from the table.
3. The ORDER BY clause is not allowed in the SELECT statement of an explicit cursor’s

declaration.
4. If a cursor FOR loop uses a subquery with an IN clause, there is no need to declare that

cursor.
5. A nonpredefined Oracle server error is declared with a PRAGMA EXCEPTION_INIT

directive.
6. A user-defined exception is declared with a PRAGMA EXCEPTION_INIT directive.
7. The RAISE statement is used to raise a predefined Oracle server exception.
8. A cursor is based on a SELECT query, which is executed when the cursor is opened.
9. A record used in a cursor FOR loop must be declared in the DECLARE section.

10. A cursor FOR loop is opened, fetched from, and closed automatically.

State Differences Between the Following Terms:
1. Static cursor and dynamic cursor.
2. Implicit cursor and explicit cursor.
3. Predefined Oracle server exception and user-defined exception.
4. Nonpredefined Oracle server exception and user-defined exception.

Answer the Following Questions:
1. What actions can be performed on an explicit cursor? Give an example of each state-

ment’s use.
2. What are four cursor attributes? State their use.
3. Can you use cursor attributes with implicit cursors? If yes, how?
4. What is a cursor FOR loop? What are its benefits?
5. What are exceptions? Where are they handled?
6. Name the error-trapping functions. How are they useful?
7. How are the three types of exceptions declared, raised, and handled?

ShahCh12v3.qxd 4/16/04 12:01 PM Page 294

Lab Activity 295

LAB ACTIVITY

1. Create a PL/SQL block to declare a cursor to select last name, first name, salary, and hire
date from the EMPLOYEE table. Retrieve each row from the cursor, and print the
employee’s information if the employee’s salary is greater than $50,000 and the hire date
is before 31-DEC-1997 (explicit cursor problem).

2. Create a PL/SQL block that declares a cursor. Pass a parameter of the same type as the
Salary column in the EMPLOYEE table to the cursor. Open the cursor with a value for
the parameter. Retrieve information into the cursor for a salary higher than the param-
eter value. Use a loop to print each employee’s information from the cursor (cursor with
parameter problem).

3. Create a PL/SQL block to increase the salary of employees in department 10. The salary
increase is 15% for employees making less than $100,000 and 10% for employees mak-
ing $100,000 or more. Use a cursor with a FOR UPDATE clause. Update the salary with
a WHERE CURRENT OF clause in a cursor FOR loop (cursor FOR loop problem).

4. Write a PL/SQL block to retrieve employees from the EMPLOYEE table based on a
qualification ID. If the qualification ID returns more than one row, handle the exception
with the appropriate handler, and print the message “More than one employee with such
qualification.” If the qualification ID returns no employee, handle the exception with the
appropriate handler, and display the message “No employees with such qualification.” If
the qualification ID returns one employee, print that employee’s name, qualification, and
salary (predefined server exception problem).

5. Write a PL/SQL block that retrieves the entire COURSE table into a cursor. Then, ask
the user to input a course ID to search. If the course exists, print its information. If the
course does not exist, throw a user-defined exception, and display the message “Course
does not exist” in the COURSE table when you execute the block with a course ID such
as CIS555. (user-defined exception problem).

6. Write a PL/SQL block that asks the user to input first number, second number, and an
arithmetic operator (or /). If the operator is invalid, throw and handle a user-
defined exception. If the second number is zero and the operator is /, handle the
ZERO_DIVIDE predefined server exception.

+ , - , *,

ShahCh12v3.qxd 4/16/04 12:01 PM Page 295

13

PL/SQL Composite Data

Types: Records, Tables,

and Varrays

IN THIS CHAPTER . . .

� You will learn about composite data types in PL/SQL.
� The basics of a PL/SQL record structure and its declaration, assignment of a

value, and use in a program are covered.
� The PL/SQL composite data type of table is discussed, together with its dec-

laration, referencing, and types of assignments.
� Built-in methods to obtain table information are outlined.
� A complex structure, a table of records, is covered.
� Variable-sized arrays, or varrays, are introduced.

COMPOSITE DATA TYPES

Composite data types are like scalar data types. Scalar data types are atomic, be-
cause they do not consist of a group. Composite data types, on the other hand, are
groups, or “collections.” Examples of composite data types are RECORD, TABLE,
nested TABLE, and VARRAY. In this chapter, we will talk about all four composite
data types.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 296

PL/SQL Records 297

PL/SQL RECORDS

PL/SQL records are similar in structure to a row in a database table. A record con-
sists of components of any scalar, PL/SQL record, or PL/SQL table type.These com-
ponents are known as fields, and they have their own values. PL/SQL records are
similar in structure to “struct” in the C language.The record does not have a value as
a whole; instead, it enables you to access these components as a group. It makes
your life easier by transferring the entire row into a record rather than each column
into a variable separately.

A PL/SQL record is based on a cursor, a table’s row, or a user-defined record
type. You learned about a record in a cursor FOR loop in the previous chapter. A
record can be explicitly declared based on a cursor or a table:

CURSOR cursorname IS
SELECT query;

Recordname CursorName%ROWTYPE;

A record can also be based on another composite data type called TABLE. We will
examine user-defined records in the next section.

Creating a PL/SQL Record

In this section, you will learn to create a user-defined record. You create a
RECORD type first, and then you declare a record with that RECORD type. The
general syntax is

TYPE recordtypename IS RECORD
(fieldname1 datatype | variable%TYPE | table.column%TYPE |
table%ROWTYPE [[NOT NULL] := | DEFAULT Expression]
[, fieldname2 . . .
, FieldName3 . . .);

recordname recordtypename;

For example,

TYPE employee_rectype IS RECORD
(e_last VARCHAR2(15),
e_first VARCHAR2(15),
e_sal NUMBER(8,2));

employee_rec employee_rectype;

In this declaration, employee_rectype is the user-defined RECORD type. Three
fields are included in its structure; e_last, e_first, and e_sal.The record employee_rec is
a record declared with the user-defined record type employee_rectype. Each field dec-
laration is similar to a scalar variable declaration.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 297

298 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

Now, you will look at another declaration with the %TYPE attribute. For
example,

TYPE employee_rectype IS RECORD
(e_id NUMBER(3) NOT NULL := 111,
e_last employee.Lname%TYPE,
e_first employee.Fname%TYPE,
e_sal employee.Salary%TYPE);

employee_rec employee_rectype;

The NOT NULL constraint can be used for any field to prevent Null values, but that
field must be initialized with a value.

Referencing Fields in a Record

A field in a record has a name that is given in the RECORD-type definition. You
cannot reference a field by its name only; you must use the record name as a quali-
fier:

recordname.fieldname

The record name and field name are joined by a dot (.). For example, you can refer-
ence the e_sal field from the previous declaration as

employee_rec.e_sal

You can use a field in an assignment statement to assign a value to it. For ex-
ample,

employee_rec.e_sal := 100000;
employee_rec.e_last := ‘Jordan’;

Working with Records

A record is known in the block where it is declared.When the block ends, the record
no longer exists. You can assign values to a record from columns in a row by using
the SELECT statement or the FETCH statement. The order of fields in a record
must match the order of columns in the row. A record can be assigned to another
record if both records have the same structure.

A record can be set to NULL, and all fields will be set to NULL. However, do
not try to assign a NULL to a record that has fields with the NOT NULL constraint.
For example,

Employee_rec := NULL;

In the previous chapter, you saw the use of the %ROWTYPE attribute. The
record declared with %ROWTYPE has the same structure as the table’s row. For
example,

emp_rec employee%ROWTYPE;

ShahCh13v3.qxd 4/16/04 12:03 PM Page 298

PL/SQL Records 299

Here, emp_rec assumes the structure of the EMPLOYEE table. The fields in
emp_rec take their column names and their data types from the table. It is advanta-
geous to use %ROWTYPE, because it does not require you to know the column
names and their data types in the underlying table. If you change the data type
and/or size of a column, the record is created at execution time and is defined with
the updated table structure. The fields in the record declared with %ROWTYPE
are referenced with the qualified name recordname.fieldname.

The program in Figure 13-1 declares a record with a record type. The SE-
LECT query retrieves a row into the record based on the student ID entered at
the prompt. The fields in the record are printed using the recordname.fieldname
notation.

Nested Records

You can create a nested record by including a record into another record as a field.
The record that contains another record as a field is called the enclosing record. For
example,

DECLARE
TYPE address_rectype IS RECORD

(first VARCHAR2(15),
last VARCHAR2(15),

SQL> DECLARE
2 TYPE STUDENT_RECORD_TYPE IS RECORD
3 (S_LAST VARCHAR2(15),
4 S_FIRST VARCHAR2(15),
5 S_PHONE VARCHAR2(10));
6 STUDENT_REC STUDENT_RECORD_TYPE;
7 BEGIN
8 SELECT LAST, FIRST, PHONE INTO STUDENT_REC
9 FROM STUDENT WHERE STUDENTID = ’&STUD_ID’;

10 DBMS_OUTPUT.PUT_LINE(STUDENT_REC.S_LAST || ’, ’
11 || STUDENT_REC.S_FIRST || ’ --> ’ ||
12 STUDENT_REC.S_PHONE);
13 END;
14 /

Enter value for stud_id: 00100
Diaz, Jose --> 9735551111

PL/SQL procedure successfully completed.

SQL>

Figure 13-1 PL/SQL record.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 299

300 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

street VARCHAR2(25),
city VARCHAR2(15),
state CHAR (2),
zip CHAR (5));

TYPE all_address_rectype IS RECORD
(home_address address_rectype,
bus_address address_rectype,
vacation_address address_rectype);

address_rec all_address_rectype;

In this example, all_address_rectype nests address_rectype as a field type. If you de-
cide to use an unnested simple record, the record becomes cumbersome. There are
six fields in address_rectype.You will have to use six fields each for each of the three
record fields home_address, bus_address, and vacation_address, which will result in a
total of 18 fields.

Nesting records makes code more readable and easier to maintain. You can
nest records to multiple levels. Dot notation is also used to reference fields in the
nested situation. For example, address_rec.home_address.city references a field
called city in the nested record home_address, which is enclosed by the record
address_rec.

PL/SQL TABLES

A table, like a record, is a composite data structure in PL/SQL. A PL/SQL table is a
single-dimensional structure with a collection of elements that store the same type
of value. In other words, it is like an array in other programming languages. If you
know COBOL, arrays are called tables in COBOL terminology, although there are
dissimilarities between a traditional array and a PL/SQL table. A table is a dynamic
structure that is not constrained, whereas an array is not dynamic in most computer
languages.

Declaring a PL/SQL Table

A PL/SQL TABLE declaration is done in two steps, like a record declaration:

1. Declare a PL/SQL table type with a TYPE statement. The structure could
use any of the scalar data types.

2. Declare an actual table based on the type declared in the previous step.

The general syntax is

TYPE tabletypename IS TABLE OF
datatype | variablename%TYPE | tablename.columnname%TYPE
[NOT NULL] INDEX BY BINARY_INTEGER;

ShahCh13v3.qxd 4/16/04 12:03 PM Page 300

PL/SQL Tables 301

For example,
TYPE deptname_table_type IS TABLE OF dept.DeptName%TYPE

INDEX BY BINARY_INTEGER;
TYPE major_table_type IS TABLE OF VARCHAR2(50)

INDEX BY BINARY_INTEGER;

You can declare a table type with a scalar data type (VARCHAR2, DATE,
BOOLEAN, or POSITIVE) or with the declaration attribute %TYPE. Optionally,
you can use NOT NULL in a declaration, which means that none of the elements in
the table may have a Null value. You must, however, add an INDEX BY BINA-
RY_INTEGER clause to the declaration.This is the only available clause for index-
ing a table at present. Indexing speeds up the search process from the table. The
primary key is stored internally in the table along with the data column. The table
consists of two columns, the index/primary key column and the data column.

You define the actual table based on the table type declared earlier. The gen-
eral syntax is

tablename tabletypename;

For example,

deptname_table deptname_table_type;
major_table major_table_type;

Figure 13-2 illustrates a table’s structure. It contains a primary key column and
a data column. You cannot name these columns. The primary key has the type BI-
NARY_INTEGER, and the data column is of any valid type.There is no limit on the
number of elements, but you cannot initialize elements of a table at declaration time.

Referencing Table Elements/Rows

The rows in a table are referenced in the same way that an element in an array is ref-
erenced. You cannot reference a table by its name only. You must use the primary
key value in a pair of parentheses as its subscript or index:

tablename (primarykeyvalue)

Primary Key Column Data Column

.
1 Sales
2 Marketing
3 Information Systems
4 Finance
5 Production
.

Figure 13-2 PL/SQL table structure.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 301

302 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

The following are valid assignments for the table’s rows:

deptname_table(5) := ‘Human Resources’;
major_table(100) := v_major;

You can use an expression or a value other than a BINARY_INTEGER
value, and PL/SQL will convert it. For example,

/* 25.7 is rounded to 26. */
deptname_table(25.7) := ‘Training’;

/* ‘5’ || ’00’ is converted to 500. */

deptname_table (‘5’ || ‘00’) := ‘Research’;

/* v_num + 7 is evaluated. */

deptname_table(v_num + 7) := ‘Development’;

In other programming languages, such as C or Visual Basic, you specify the
number of elements in an array when you declare the array. The memory locations
are reserved for elements in an array at the declaration time. In a PL/SQL table, the
primary key values are not preassigned.A row is created when you assign a value to
it. If a row does not exist and you try to access it, the PL/SQL predefined server ex-
ception NO_DATA_FOUND is raised. You can keep track of rows’ primary key
values if you use them in a sequence and keep track of the minimum and the maxi-
mum value.

Assigning Values to Rows in a PL/SQL Table

You can assign values to the rows in a table in three ways:

1. Direct assignment.
2. Assignment in a loop.
3. Aggregate assignment.

Direct Assignment. You can assign a value to a row with an assignment
statement, as you already learned in the previous topic. This is preferable if only a
few assignments are to be made. If an entire database table’s values are to be as-
signed to a table, however, a looping method is preferable.

Assignment in a Loop. You can use any of the three PL/SQL loops to as-
sign values to rows in a table. The program block in Figure 13-3 assigns all Sunday
dates for the year 2004 to a table.The primary key index value will vary from 1 to 52.
The table column will contain dates for 52 Sundays. If you are innovative, you can
create great applications with loops and tables.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 302

PL/SQL Tables 303

Aggregate Assignment. You can assign a table’s values to another table.
The data types of both tables must be compatible. When you assign a table’s values
to another table, the table receiving those values loses all its previous primary key
values as well as its data column values. If you assign an empty table with no rows to
another table with rows, the recipient table is cleared. In other words, it loses all its
rows. Both tables must have the same type for such an assignment.

SQL> DECLARE
2 TYPE DATE_TABLE_TYPE IS TABLE OF DATE
3 INDEX BY BINARY_INTEGER;
4 SUNDAY_TABLE DATE_TABLE_TYPE;
5 V_DAY BINARY_INTEGER := 1;
6 V_DATE DATE;
7 V_COUNT NUMBER(3) := 1;
8 BEGIN
9 V_DATE := ’01-JAN-2004’;

10 WHILE V_COUNT <= 365 LOOP
11 IF UPPER(TO_CHAR(V_DATE, ’DAY’)) LIKE ’%SUNDAY%’ THEN
12 SUNDAY_TABLE (V_DAY) := V_DATE;
13 DBMS_OUTPUT.PUT_LINE
14 (TO_CHAR (SUNDAY_TABLE (V_DAY), ’MONTH DD, YYYY’));
15 V_DAY := V_DAY +1;
16 END IF;
17 V_COUNT := V_COUNT +1;
18 V_DATE := V_DATE +1;
19 END LOOP;
20 END;
21 /

JANUARY 04, 2004
JANUARY 11, 2004
JANUARY 18, 2004
JANUARY 25, 2004
FEBRUARY 01, 2004
FEBRUARY 08, 2004
FEBRUARY 15, 2004
FEBRUARY 22, 2004
FEBRUARY 29, 2004
. . .
DECEMBER 19, 2004
DECEMBER 26, 2004

PL/SQL procedure successfully completed.

SQL>

Figure 13-3 Table row assignment in a loop.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 303

304 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

Built-In Table Methods

The built-in table methods are procedures or functions that provide information
about a PL/SQL table. Figure 13-4 lists the built-in table methods and their use. The
general syntax is

tablename.methodname [(index1 [, index2])]

where methodname is one of the methods described in Figure 13-4. For example,

total_rows := deptname_table.COUNT; /* counts elements */
deptname_table.DELETE(5); /* deletes element 5 */
deptname_table.DELETE(7, 10); /* deletes element 7 to 10 */
deptname_table.DELETE; /* deletes all elements */
next_row := deptname_table.NEXT(25); /* index after 25 */
previous_row := deptname_table.PRIOR(7); /* index before 7 */
first_row := deptname_table.FIRST; /* smallest index */
last_row := deptname_table.LAST; /* largest index */
IF deptname_table.EXISTS(11) THEN . . . /* true, if index 11 exists */

Now, look at another example of TABLE, in Figure 13-5, where the program
declares two table types. The two tables based on these TABLE types are parallel
tables. The corresponding values in the two tables are related. The program popu-
lates these two tables using a cursor FOR loop. Then, another simple FOR loop is
used to print information from the two tables.

Built-in Method Use

FIRST Returns the smallest index number in a PL/SQL table.
LAST Returns the largest index number in a PL/SQL table.
COUNT Returns the total number of elements in a PL/SQL table.
PRIOR(n) Returns the index number that is before index number n.
NEXT(n) Returns the index number that is after index number n.
EXISTS(n) Returns TRUE if index n exists in the table.
TRIM Removes one element from end of the table.
TRIM (n) Removes n elements from end of the table.
DELETE Removes all elements from a PL/SQL table.
DELETE (n) Removes the n-th element from the table.
DELETE (m, n) Removes all elements in the range m . . . n from a table.
EXTEND Appends a null element to a table.
EXTEND (n) Appends n null elements to a table.
EXTEND (n, x) Appends n copies of the x-th element to a table.

Figure 13-4 PL/SQL built-in table methods.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 304

PL/SQL Tables 305

Table of Records

The PL/SQL table type is declared with a data type. You may use a record type as a
table’s data type. The %ROWTYPE declaration attribute can be used to define the
record type.When a table is based on a record, the record must consist of fields with

SQL> DECLARE
2 TYPE LNAME_TABLE_TYPE IS TABLE OF EMPLOYEE.LNAME%TYPE
3 INDEX BY BINARY_INTEGER;
4 NAME_TABLE LNAME_TABLE_TYPE;
5 TYPE SALARY_TABLE_TYPE IS TABLE OF EMPLOYEE.SALARY%TYPE
6 INDEX BY BINARY_INTEGER;
7 SALARY_TABLE SALARY_TABLE_TYPE;
8 C BINARY_INTEGER := 0;
9 CURSOR C_LASTSAL IS

10 SELECT LNAME, SALARY FROM EMPLOYEE;
11 V_TOT NUMBER(2);
12 BEGIN
13 SELECT COUNT(*) INTO V_TOT FROM EMPLOYEE;
14 /* TABLE ASSIGNMENT IN LOOP */
15 FOR LASTSAL_REC IN C_LASTSAL LOOP
16 C := C+1;
17 NAME_TABLE(C) := LASTSAL_REC.LNAME;
18 SALARY_TABLE(C) := LASTSAL_REC.SALARY;
19 END LOOP;
20 /* PRINTING TABLE IN LOOP */
21 FOR C IN 1..V_TOT LOOP
22 DBMS_OUTPUT.PUT_LINE(NAME_TABLE(C) || ’ ’ ||
23 TO_CHAR(SALARY_TABLE(C), ’$999,999.99’));
24 END LOOP;
25 END;
26 /

Smith $291,500.00
Houston $160,500.00
Roberts $80,250.00
McCall $66,500.00
Dev $85,600.00
Shaw $24,500.00
Garner $48,150.00
Chen $35,000.00

PL/SQL procedure successfully completed.

SQL>

Figure 13-5 PL/SQL table.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 305

306 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

scalar data types. The record must not contain a nested record. The following exam-
ples show different ways to declare table types based on records:

• A PL/SQL table type based on a programmer-defined record:

TYPE student_record_type IS

RECORD (stu_id NUMBER(3), stu_name VARCHAR2(30));

TYPE student_table_type IS TABLE OF student_record_type

INDEX BY BINARY_INTEGER;
Student_table student_table_type;

• A PL/SQL table type based on a database table:

TYPE employee_table_type IS TABLE OF employee%ROWTYPE

INDEX BY BINARY_INTEGER;

Employee_table employee_table_type;

• A PL/SQL table type based on a row returned by a cursor:

CURSOR employee_cur IS SELECT * FROM employee;

TYPE employee_cur_table_type IS employee_cur%ROWTYPE

INDEX BY BINARY_INTEGER;

Employee_cur_table employee_cur_table_type;

The %ROWTYPE attribute is not used when the table is based on a user-
defined record. You use the %ROWTYPE attribute when the table is based on a
database table or a cursor.

The fields of a PL/SQL table based on a record are referenced with the fol-
lowing syntax:

tablename (index).fieldname

For example,

Student_table(10).stu_name := ‘Ephrem’;
Employee_table(13).Salary := 50000;

PL/SQL VARRAYS

A varray is another composite data type or collection type in PL/SQL.Varray stands
for variable-size array. They are single-dimensional, bounded collections of ele-
ments with the same data type. They retain their ordering and subscripts when
stored in and retrieved from a database table. They are similar to a PL/SQL table,
and each element is assigned a subscript/index starting with 1.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 306

PL/SQL Varrays 307

A PL/SQL VARRAY declaration is done in two steps, like a table declaration:

1. Declare a PL/SQL VARRAY type with a TYPE statement. The TYPE
declaration includes a size to set the upper bound of a varray. The lower
bound is always one.

2. Declare an actual varray based on the type declared in the previous step.

The general syntax is

DECLARE
TYPE varraytypename IS VARRAY (size) OF ElementType [NOT NULL];
varrayname varraytypename;

For example,

DECLARE
TYPE Lname_varray_type IS VARRAY(5) OF employee.LName%TYPE;
Lname_varray Lname_varray_type := Lname_varray_type();

When a varray is declared, it is NULL. It must be initialized before referencing
its elements. In the second step of a varray’s declaration, the assignment part initial-
izes it. The EXTEND method is used before adding a new element to a varray. In
the example above, the upper bound would be five, which limits number of elements
to five.

In Figure 13-6, COURSEID_VARRAY_TYPE is declared with upper bound
of 10. Next, the COURSEID_VARRAY is declared with the varray type and then
initialized. A cursor FOR loop then adds elements to the varray. Notice the use of
the EXTEND method before assigning a value to the new element. The COUNT
method returns the number of elements, the LIMIT method the upper bound, the
FIRST method the first subscript, and the LAST method the last subscript.

In Oracle9i, it is possible to create a collection of a collection (multilevel col-
lection) like a varray of varrays. For example,

DECLARE
TYPE varray_type1 IS VARRAY(3) OF NUMBER;
TYPE varray_type2 IS VARRAY(2) of varray_type1;

In Figure 13-7, V1 is a varray, and V2 is a varray of varray V1. Varray V1 con-
tains three elements, and varray V2 contains six elements Elements of
varray V1 are referenced with one subscript, but elements of varray V2 are refer-
enced with two subscripts.

There is one more type of collection in PL/SQL. Nested tables use a column that
has a table type as its data type and are single-dimensional, unbounded collections of

12 # 3 = 62.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 307

308 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

elements with the same data type. A nested table can be used in PL/SQL as well as
a database table. You can use a column that has a table type as its data type in a
database table.

SQL> DECLARE
2 CURSOR COURSE_CUR IS
3 SELECT COURSEID
4 FROM COURSE
5 WHERE ROWNUM <= 5;
6 TYPE COURSEID_VARRAY_TYPE IS VARRAY(10) OF COURSE.COURSEID%TYPE;
7 COURSEID_VARRAY COURSEID_VARRAY_TYPE := COURSEID_VARRAY_TYPE();
8 V_COUNT NUMBER(1) := 1;
9 BEGIN

10 FOR COURSE_REC IN COURSE_CUR LOOP
11 COURSEID_VARRAY.EXTEND;
12 COURSEID_VARRAY(V_COUNT) := COURSE_REC.COURSEID;
13 DBMS_OUTPUT.PUT_LINE
14 (’Courseid(’ || V_COUNT || ’): ’
15 || COURSEID_VARRAY(V_COUNT));
16 V_COUNT := V_COUNT + 1;
17 END LOOP;
18 DBMS_OUTPUT.PUT_LINE
19 (’NUMBER OF ELEMENTS: ’ || COURSEID_VARRAY.COUNT);
20 DBMS_OUTPUT.PUT_LINE
21 (’LIMIT ON ELEMENTS: ’ || COURSEID_VARRAY.LIMIT);
22 DBMS_OUTPUT.PUT_LINE
23 (’FIRST ELEMENTS: ’ || COURSEID_VARRAY.FIRST);
24 DBMS_OUTPUT.PUT_LINE
25 (’LAST ELEMENTS: ’ || COURSEID_VARRAY.LAST);
26 END;
27 /

Courseid(1): EN100
Courseid(2): LA123
Courseid(3): CIS253
Courseid(4): CIS265
Courseid(5): MA150
NUMBER OF ELEMENTS: 5
LIMIT ON ELEMENTS: 10
FIRST ELEMENTS: 1
LAST ELEMENTS: 5

PL/SQL procedure successfully completed.

SQL>

Figure 13-6 PL/SQL Varray.

ShahCh13v3.qxd 4/16/04 12:03 PM Page 308

In a Nutshell . . . 309

IN A NUTSHELL . . .

� PL/SQL has composite data types, which are data types like scalar data
types. The composite data types consist of groups or collections.

� PL/SQL composite data types include records, tables, nested tables, and varrays.

SQL> DECLARE
2 TYPE V_TYPE1 IS VARRAY(3) OF NUMBER;
3 TYPE V_TYPE2 IS VARRAY(2) OF V_TYPE1;
4 V1 V_TYPE1 := V_TYPE1(10, 20, 30);
5 V2 V_TYPE2 := V_TYPE2(V1);
6 BEGIN
7 DBMS_OUTPUT.PUT_LINE(’VARRAY:’);
8 FOR I IN 1..3 LOOP
9 DBMS_OUTPUT.PUT_LINE(’V1(’ || I || ’)=’ || V1(I));

10 END LOOP;
11 V2.EXTEND;
12 V2(2) := V_TYPE1(100, 200, 300);
13 DBMS_OUTPUT.PUT_LINE(’VARRAY OF VARRAY:’);
14 FOR I IN 1..2 LOOP
15 FOR J IN 1..3 LOOP
16 DBMS_OUTPUT.PUT_LINE
17 (’V2(’ || I || ’)(’ || J || ’)=’ || V2(I)(J));
18 END LOOP;
19 END LOOP;
20 END;
21 /

VARRAY:
V1(1) = 10
V1(2) = 20
V1(3) = 30
VARRAY OF VARRAY:
V2(1)(1) = 10
V2(1)(2) = 20
V2(1)(3) = 30
V2(2)(1) = 100
V2(2)(2) = 200
V2(2)(3) = 300

PL/SQL procedure successfully completed.

SQL>

Figure 13-7 Varray of varrays.

ShahCh13v3.qxd 4/16/04 12:04 PM Page 309

310 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

� PL/SQL records are similar in structure to rows in the database table. They
consist of components of any scalar type, PL/SQL record type, or PL/SQL
table type.

� Components in a PL/SQL record are called fields.
� A record declaration is performed in two steps. First, a record type is de-

clared. Then, a record is declared with the declared record type.
� The fields in a record are referenced with the record name as a qualifier

(e.g., recordname.columnname).
� A record’s fields can be assigned values using a simple assignment state-

ment with SELECT or FETCH.
� A nested record is a record used as a field in another record.The record con-

taining another record is called the enclosing record.
� A PL/SQL table is another composite data type. It is a single-dimensional

structure with a collection of elements that store the same type of values.
� A table is like an array, but a table is unbounded.
� A table declaration is performed in two steps. First, a table type is declared.

Then, a table is declared with that table type.
� A table consists of two columns, a primary key column and a data column.

The primary key is of type BINARY_INTEGER.
� A table element is referenced by the table name with its index number

parentheses.
� There are three ways to assign values to a table’s elements: direct assign-

ment, assignment in a loop, and aggregate assignment.
� The table’s information is obtained with built-in methods, which are

PL/SQL functions and procedures. The methods are used with a table name
as a qualifier (e.g., tablename.method).

� A table of records is declared with a record type as the table’s data type. It
can be declared with a record type as its type, with a database table and
%ROWTYPE, or with a row returned by a cursor.

� Fields in a table of records are referenced with tablename(index).fieldname.
� Nested tables use a column that has a table type as its data type. They are

single-dimensional, unbounded collections of elements.
� Varrays are single-dimensional, bounded collections of elements. They re-

tain their ordering and subscripts when stored and retrieved from a data-
base table.

� A varray must be initialized before referencing its elements. The EXTEND
method is used before adding a new element to a varray.

� The COUNT, LIMIT, FIRST, and LAST varray methods return count,
upper bound, first subscript, and last subscript, respectively.

� A varray of varrays is a multilevel collection, with elements that can be ref-
erenced using two subscripts.

ShahCh13v3.qxd 4/16/04 12:04 PM Page 310

Lab Activity 311

EXERCISE QUESTIONS

True/False:

1. A database table is an example of a PL/SQL composite data type.

2. A PL/SQL record can be set to a Null value with an assignment, in which case all its fields
are set to NULL.

3. A record that contains another record as a field is called the enclosing record.

4. A PL/SQL table has a specified number of rows, which cannot be changed, at declaration
time.

5. A PL/SQL table has two columns, a primary key column and a data column.

6. A PL/SQL table’s row is referenced by the table name and a numeric index.

7. When a PL/SQL table is assigned to another PL/SQL table of the same type, the recipi-
ent table loses its previous rows and indexes.

8. A varray’s COUNT must be higher than its LIMIT.

9. Once declared, a varray’s size limit cannot be changed.

10. A varray must be initialized before adding an element to it.

Answer the Following Questions:

1. How do you declare a PL/SQL record? Explain with an example.

2. Give examples of the assignment of values to fields in a PL/SQL record.

3. What is a PL/SQL table? What are its similarities and differences between a PL/SQL
table and an array?

4. How do you declare a PL/SQL table? Explain with an example.

5. Give three methods used in assigning values to the rows in a PL/SQL table.

6. What is a table of records?

7. What is a varray? What are the similarities and differences between a varray and a
PL/SQL table?

8. How is a varray of varrays declared? How are its elements referenced?

LAB ACTIVITY

1. Create a PL/SQL block to retrieve last name, first name, and salary from the EMPLOYEE
table into a cursor. Populate three tables with the values retrieved into the cursor: one to
store last names, one to store first names, and one to store salaries. Use a loop to retrieve
this information from the three tables, and print it to the screen using the package
DBMS_OUTPUT.PUT_LINE.

2. Declare a PL/SQL record based on the structure of the DEPT table. Use a substitution
variable to retrieve information about a specific department, and store it in the PL/SQL
record. Print the record information using DBMS_OUTPUT.PUT_LINE.

ShahCh13v3.qxd 4/16/04 12:04 PM Page 311

312 Chap. 13 PL/SQL Composite Data Types: Records, Tables, and Varrays

3. Use a PL/SQL table of records to retrieve all information from the DEPT table, and
print the information to the screen. You will declare a table to store names and locations
of the departments. Remember that the department number is a multiple of 10. Retrieve
all department information from the DEPT table to the PL/SQL table using a loop, and
then use another loop to print the information.

4. Use a PL/SQL cursor to retrieve all CourseId and Title information from the COURSE
table. Create two varrays to hold CourseId and Title values, respectively. Add elements
to both varrays, and assign values retrieved into the cursor. Display the values from both
varrays.

ShahCh13v3.qxd 4/16/04 12:04 PM Page 312

14

PL/SQL Named Blocks:

Procedure, Function,

Package, and Trigger

IN THIS CHAPTER . . .

� You will learn about PL/SQL modules, also known as named blocks.
� The basics of a named module called a procedure (its call, its body, and its

parameter types) are explained.
� The PL/SQL module called a function is covered, along with its call, body,

and RETURN types.
� Package structure, specification, body, benefits, and call to its blocks are

discussed.
� Triggers, their types, and their functioning are introduced.

In previous chapters dealing with PL/SQL, an anonymous block was used for all
programming examples. The anonymous block does not have a name, and it cannot
be called by another block in the program. It cannot take arguments from another
block, either. An anonymous block can call other types of PL/SQL blocks called
procedures and functions. The procedures and functions are named blocks, and
they can be called with parameters. An anonymous block can be nested within a
procedure, function, or another anonymous block. The purpose of a procedure or
function call is to modularize a PL/SQL program. A named PL/SQL block is com-
piled when it is created or when it is altered. The compilation process consists of
three steps: syntax error checking, binding, and p-code creation. A syntactically

ShahCh14v3.qxd 4/16/04 12:04 PM Page 313

314 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

error-free program’s variables are assigned storage in the binding stage. Then, the
list of instructions, called p-code, is generated for the PL/SQL engine. P-code is
stored in the database for all named blocks.

PROCEDURES

A procedure is a named PL/SQL program block that can perform one or more
tasks. A procedure is the building block of modular programming. The general syn-
tax of a procedure is

CREATE [OR REPLACE] PROCEDURE procedurename
[(parameter1 [, parameter2 . . .])]

IS
[constant/variable declarations]

BEGIN
executable statements

[EXCEPTION
exception handling statements]

END [procedurename];

where procedurename is a user-supplied name that follows the rules used in naming
identifiers. The parameter list has the names of parameters passed to the procedure
by the calling program as well as the information passed from the procedure to the
calling program. The local constants and variables are declared after the reserved
word IS. If there are no local identifiers to declare, there is nothing between the re-
served words IS and BEGIN. The executable statements are written after BEGIN
and before EXCEPTION or END. There must be at least one executable statement
in the body. The reserved word EXCEPTION and the exception-handling state-
ments are optional.

Calling a Procedure

A call to the procedure is made through an executable PL/SQL statement. The pro-
cedure is called by specifying its name along with the list of parameters (if any) in
parentheses. The call statement ends with a semicolon (;). The general syntax is

procedurename [(parameter1, . . .)];

For example,

monthly_salary(v_salary);
calculate_net(v_monthly_salary, 0.28);
display_messages;

In these examples of procedure calls, parameters are enclosed in parentheses.
You can use a variable, constant, expression, or literal value as a parameter. If you
are not passing any parameters to a procedure, parentheses are not needed.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 314

Procedures 315

Parameter Type Use

IN Passes a value into the program; read-only type of value; it cannot be changed; default
parameter type. For example, constants, literal, and expressions can be used as IN
parameters.

OUT Passes a value back from the program; write-only type of value; cannot assign a
default value. If a program is successful, value is assigned. For example, a variable can
be used as OUT parameter.

IN OUT Passes a value in and returns a value back; value is read from and then written to. For
example, a variable can be used as a IN OUT parameter.

Figure 14-1 Types of parameters.

Procedure Header

The procedure definition that comes before the reserved word IS is called the pro-
cedure header. The procedure header contains the name of the procedure and the
parameter list with data types (if any). For example,

CREATE OR REPLACE PROCEDURE monthly_salary
(v_salary_in IN employee.Salary%TYPE)

CREATE OR REPLACE PROCEDURE calculate_net
(v_monthly_salary_in IN employee.Salary%TYPE,
v_taxrate_in IN NUMBER)

CREATE OR REPLACE PROCEDURE display_messages

The procedure headers in the examples are based on the procedure calls
shown previously. The parameter list in the header contains the name of a parame-
ter along with its type. The parameter names used in the procedure header do not
have to be the same as the names used in the call. The number of parameters in the
call and in the header must match, and the parameters must be in the same order.

Procedure Body

The procedure body contains declaration, executable, and exception-handling sec-
tions. The declaration and exception-handling sections are optional. The executable
section contains action statements, and it must contain at least one.

The procedure body starts after the reserved word IS. If there is no local dec-
laration, IS is followed by the reserved word BEGIN. The body ends with the re-
served word END. There can be more than one END statement in the program, so
it is a good idea to use the procedure name as the optional label after END.

Parameters

Parameters are used to pass values back and forth from the calling environment to
the Oracle server.The values passed are processed and/or returned with a procedure
execution. There are three types of parameters: IN, OUT, and IN OUT. Figure 14-1
shows the uses of these parameters.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 315

316 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

Actual and Formal Parameters

The parameters passed in a call statement are called the actual parameters. The pa-
rameter names in the header of a module are called the formal parameters. The ac-
tual parameters and their matching formal parameters must have the same data
types. In a procedure call, the parameters are passed without data types. The proce-
dure header contains formal parameters with data types, but the size of the data
type is not required. Figure 14-2 shows the relationship between actual and formal
parameters.

Matching Actual and Formal Parameters

There are two different ways in PL/SQL to link formal and actual parameters:

1. In positional notation, the formal parameter is linked with an actual pa-
rameter implicitly by position (see Fig. 14-2). Positional notation is more
commonly used for parameter matching.

2. In named notation, the formal parameter is linked with an actual parameter
explicitly by name.The formal parameter and actual parameters (the values
of the parameters) are linked in the call statement with the symbol

The general syntax is

formalparametername => argumentvalue

For example,

EMPNO => 543

In Figure 14-3, a procedure code is shown. If a procedure with the same name al-
ready exists, it is replaced.You can type it in any editor such as Notepad.When you run
it, a “Procedure created” message is displayed.The procedure named dependent_info is
compiled into p-code and then stored in the database for future execution.

You can execute this procedure from the environment
with the EXECUTE command. For example,

SQL> EXECUTE dependent_info

1SQL 7 prompt2
SQL * Plus

= 7 .

-- Procedure Call
SEARCH_EMP (543, LAST)

-- Procedure Header
PROCEDURE SEARCH_EMP (EMPNO IN NUMBER, LAST OUT VARCHAR2)

Figure 14-2 Actual and formal parameters.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 316

Procedures 317

SQL> CREATE OR REPLACE PROCEDURE DEPENDENT_INFO
2 IS
3 CURSOR DEP_CUR IS
4 SELECT LNAME, FNAME, COUNT(DEPENDENTID) CNT
5 FROM EMPLOYEE E, DEPENDENT D
6 WHERE E.EMPLOYEEID = D.EMPLOYEEID
7 GROUP BY LNAME, FNAME;
8 BEGIN
9 FOR DEP_REC IN DEP_CUR LOOP

10 IF DEP_REC.CNT >= 2 THEN
11 DBMS_OUTPUT.PUT_LINE(DEP_REC.LNAME || ’, ’ ||
12 DEP_REC.FNAME||’ has ’||DEP_REC.CNT||’ dependents’);
13 END IF;
14 END LOOP;
15 END;
16 /

Procedure created.

SQL> EXECUTE DEPENDENT_INFO
Dev, Derek has 2 dependents
Chen, Sunny has 3 dependents

PL/SQL procedure successfully completed.

SQL>

Figure 14-3 Procedure without parameters.

If you receive an error, use the following command:

SHOW ERROR

The procedure becomes invalid if the table on which it is based is deleted or al-
tered. The compiled version of the procedure is stored, and this version should be
re-compiled in case of alterations to the table(s). You can recompile that procedure
with the following command:

ALTER PROCEDURE procedurename COMPILE;

In Figure 14-4, the procedure search_emp receives three parameters—i_empid,
o_last, and o_first—as IN, OUT, and OUT types, respectively. Parameter i_empid is
used for input/reading, and parameters o_last and o_first are used for writing. In
Figure 14-5, you will see an anonymous block that calls the procedure in Figure 14-4
with three parameters.The procedure searches for the employee’s name based on the
V_ID that is passed. If the employee is not found, the exception is handled in the pro-
cedure. If the employee is found, the procedure sends out the last name and first name

ShahCh14v3.qxd 4/16/04 12:04 PM Page 317

318 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

SQL> DECLARE
2 V_LAST EMPLOYEE.LNAME%TYPE;
3 V_FIRST EMPLOYEE.FNAME%TYPE;
4 V_ID EMPLOYEE.EMPLOYEEID%TYPE := &EMP_ID;
5 BEGIN
6 SEARCH_EMP(V_ID, V_LAST, V_FIRST);
7 IF V_LAST IS NOT NULL THEN
8 DBMS_OUTPUT.PUT_LINE(’Employee: ’ || V_ID);
9 DBMS_OUTPUT.PUT_LINE(’Name: ’ || V_LAST || ’, ’ || V_FIRST);

10 END IF;
11 END;
12 /

Enter value for emp_id: 100
EmployeeId 100 does not exist

PL/SQL procedure successfully completed.

SQL> /
Enter value for emp_id: 200
Employee: 200
Name: Shaw, Jinku

PL/SQL procedure successfully completed.

SQL>

Figure 14-5 Anonymous block with call to procedure in Figure 14-4.

SQL> CREATE OR REPLACE PROCEDURE SEARCH_EMP
2 (I_EMPID IN NUMBER,
3 O_LAST OUT VARCHAR2,
4 O_FIRST OUT VARCHAR2)
5 IS
6 BEGIN
7 SELECT LNAME, FNAME
8 INTO O_LAST, O_FIRST
9 FROM EMPLOYEE

10 WHERE EMPLOYEEID = I_EMPID;
11 EXCEPTION
12 WHEN OTHERS THEN
13 DBMS_OUTPUT.PUT_LINE(’EmployeeId ’ ||
14 TO_CHAR(I_EMPID) || ’ does not exist’);
15 END SEARCH_EMP;
16 /

Procedure created.

SQL>

Figure 14-4 Procedure with parameters.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 318

Functions 319

of the employee to the calling anonymous block.The anonymous block then prints the
employee’s information.

FUNCTIONS

A function, like a procedure, is a named PL/SQL block. Like a procedure, it is also
a stored block. The main difference between a function and a procedure is that a
function always returns a value to the calling block. A function is characterized as
follows:

� A function can be passed zero or more parameters.
� A function must have an explicit RETURN statement in the executable sec-

tion to return a value.
� The data type of the return value must be declared in the function’s header.
• A function cannot be executed as a stand-alone program.

A function may have parameters of the IN, OUT, and IN OUT types, but the
primary use of a function is to return a value with an explicit RETURN statement.
The use of OUT and IN OUT parameter types in functions is rare—and considered
to be a bad practice. The general syntax is

CREATE [OR REPLACE] FUNCTION functionname
[(parameter1 [, parameter2 . . .])]
RETURN DataType

IS
[constant | variable declarations]

BEGIN
executable statements
RETURN returnvalue

[EXCEPTION
exception-handling statements
RETURN returnvalue]

END [functionname];

The RETURN statement does not have to be the last statement in the body of
a function.The body may contain more than one RETURN statement, but only one
is executed with each function call. If you have RETURN statements in the excep-
tion section, you need one return for each exception.

Function Header

The function header comes before the reserved word IS. The header contains the
name of the function, the list of parameters (if any), and the RETURN data type.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 319

320 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

Function Body

The body of a function must contain at least one executable statement. If there is no
declaration, the reserved word BEGIN follows IS. If there is no exception handler,
you can omit the word EXCEPTION. The function name label next to END is op-
tional. There can be more than one return statement, but only one RETURN is ex-
ecuted in a function call.

RETURN Data Types

A function can return a value with a scalar data type, such as VARCHAR2, NUM-
BER, BINARY_INTEGER, or BOOLEAN. It can also return a composite or com-
plex data type, such as a PL/SQL table, a PL/SQL record, a nested table, VARRAY,
or LOB.

Calling a Function

A function call is similar to a procedure call. You call a function by mentioning its
name along with its parameters (if any).The parameter list is enclosed within paren-
theses. A procedure does not have an explicit RETURN statement, so a procedure
call can be an independent statement on a separate line. A function does return a
value, so the function call is made via an executable statement, such as an assign-
ment, selection, or output statement. For example,

v_salary := get_salary(&emp_id);
IF emp_exists(v_empid) . . .

In the first example of a function call, the function get_salary is called from an
assignment statement with the substitution variable emp_id as its actual parameter.
The function returns the employee’s salary, which is assigned to the variable
v_salary.

In the second example, the function call to the function emp_exists is made
from an IF statement. The function searches for the employee and returns a
Boolean TRUE or FALSE to the statement.

An anonymous block calls get_deptname function of Figure 14-6 in Figure 14-7,
with an employee’s department number as a parameter. The function returns the de-
partment name back to the calling block. The calling block then prints the employ-
ee’s information along with the department name.

In this example, the code of function get_deptname is executed in
which returns a “Function created” message if the function code has no syntactical
errors. Then, the calling anonymous block is executed, which calls the compiled
function get_deptname with the v_deptid parameter of the NUMBER type. The
function searches through the DEPT table, retrieves the corresponding department
name, and returns v_deptname, which is assigned to v_dept_name in the anonymous
block.

SQL * Plus,

ShahCh14v3.qxd 4/16/04 12:04 PM Page 320

Functions 321

SQL> CREATE OR REPLACE FUNCTION GET_DEPTNAME
2 (I_DEPTID IN NUMBER)
3 RETURN VARCHAR2
4 IS
5 V_DEPTNAME VARCHAR2(12);
6 BEGIN
7 SELECT DEPTNAME
8 INTO V_DEPTNAME
9 FROM DEPT

10 WHERE DEPTID = I_DEPTID;
11 RETURN V_DEPTNAME;
12 END GET_DEPTNAME;
13 /

Function created.

SQL>

Figure 14-6 Function with parameters.

SQL> DECLARE
2 V_DEPTID EMPLOYEE.DEPTID%TYPE;
3 V_DEPT_NAME VARCHAR2(12);
4 V_EMPID EMPLOYEE.EMPLOYEEID%TYPE := &EMP_ID;
5 BEGIN
6 SELECT DEPTID
7 INTO V_DEPTID FROM EMPLOYEE
8 WHERE EMPLOYEEID = V_EMPID;
9 V_DEPT_NAME := GET_DEPTNAME(V_DEPTID);

10 DBMS_OUTPUT.PUT_LINE(’Employee: ’ || V_EMPID);
11 DBMS_OUTPUT.PUT_LINE
12 (’Department Name: ’ || V_DEPT_NAME);
13 EXCEPTION
14 WHEN OTHERS THEN
15 DBMS_OUTPUT.PUT_LINE(V_EMPID || ’ not found.’);
16 END;
17 /

Enter value for emp_id: 200
Employee: 200
Department Name: Sales

PL/SQL procedure successfully completed.

SQL>

Figure 14-7 Function call.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 321

322 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

SQL> DECLARE
2 V_SAL EMPLOYEE.SALARY%TYPE;
3 V_COMM EMPLOYEE.COMMISSION%TYPE;
4 V_TOTSAL NUMBER(8) := 0;
5 V_TOTCOMM NUMBER(8) := 0;
6 v_TOTAL NUMBER(8);
7 COUNTER NUMBER(2) := 10;
8 BEGIN /* MAIN BLOCK */
9 DBMS_OUTPUT.PUT_LINE(’DEPTID SALARY COMMISSION’);

10 DBMS_OUTPUT.PUT_LINE(’---------- ----------- -------------------’);
11 WHILE COUNTER <= 40 LOOP
12 SELECT SUM(NVL(SALARY, 0)), SUM(NVL(COMMISSION, 0))
13 INTO V_SAL, V_COMM FROM EMPLOYEE
14 WHERE DEPTID = COUNTER;
15 DBMS_OUTPUT.PUT_LINE(COUNTER || ’ ’ ||
16 TO_CHAR(V_SAL, ’$999,999’) || ’ ’
17 || TO_CHAR(V_COMM, ’$999,999’));
18 V_TOTSAL := DO_TOTAL(V_TOTSAL, V_SAL);
19 V_TOTCOMM := DO_TOTAL(V_TOTCOMM, V_COMM);
20 COUNTER := COUNTER + 10;
21 END LOOP;
22 V_TOTAL := V_TOTSAL + V_TOTCOMM;
23 DBMS_OUTPUT.PUT_LINE(’SUBTOTAL ’ ||
24 TO_CHAR(V_TOTSAL, ’$999,999’) || ’ ’ ||
25 TO_CHAR(V_TOTCOMM, ’$999,999’));
26 DBMS_OUTPUT.PUT_LINE(’TOTAL OF SALARY AND COMMISSION: ’ ||
27 TO_CHAR(V_TOTAL, ’$999,999’));
28 END; /* MAIN BLOCK */
29 /

DEPTID SALARY COMMISSION
---------- ----------- -------------------
10 $375,000 $35,000
20 $146,500 $20,000
30 $69,500 $8,000
40 $150,000 $10,000
SUBTOTAL $741,000 $73,000
TOTAL OF SALARY AND COMMISSION: $814,000

PL/SQL procedure successfully completed.

SQL>

Figure 14-8 Function call from a loop.

In the next example, reusability of a function is explained. When a function is
compiled and stored, it can be called many times. You write it once, but you can use
it many times. Figure 14-8 has a WHILE loop in the anonymous block that calls the
function do_total of Figure 14-9 eight times, for values of the counter (or DeptId)

ShahCh14v3.qxd 4/16/04 12:04 PM Page 322

Packages 323

equal to 10, 20, 30, and 40. For each value of the counter, the function do_total is
called twice, once with two salary parameters and once with two commission pa-
rameters. Each time, do_total adds v_sal to v_totsal or v_comm to v_totcomm and
returns totals to v_totsal and v_totcomm, respectively. Then, variable v_total is used
to find the grand total of all salaries and commissions in the anonymous block. The
block then prints the total payroll for the company.

Calling a Function from an SQL Statement

A stored function block can be called from an SQL statement, such as SELECT. For
example,

SELECT get_deptname(10) FROM dual;

This function call with parameter 10 will return the department name Finance in the
N2 example tables. You can also use a substitution variable as parameter.

PACKAGES

A package is a collection of PL/SQL objects. The objects in a package are grouped
within BEGIN and END blocks. A package may contain objects from the following
list:

� Cursors.
� Scalar variables.
� Composite variables.
� Constants.
� Exception names.
� TYPE declarations for records and tables.

SQL> CREATE OR REPLACE FUNCTION DO_TOTAL
2 (I_AMOUNT IN NUMBER, I_TOTAL IN NUMBER)
3 RETURN NUMBER
4 IS
5 V_RESULT NUMBER(8) := 0;
6 BEGIN
7 V_RESULT := I_TOTAL + I_AMOUNT;
8 RETURN V_RESULT;
9 END DO_TOTAL;

10 /
Function created.
SQL>

Figure 14-9 This function (see Fig. 14-8) is called multiple times.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 323

324 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

� Procedures.
� Functions.

Packages are modular in nature, and Oracle has many built-in packages. If you
remember, DBMS_OUTPUT is a built-in package. You also know that a package
called STANDARD contains definitions of many operators used in Oracle. There
are many benefits to using a package.

The objects in a package can be declared as public objects, which can be refer-
enced from outside, or as private objects, which are known only to the package.You can
restrict access to a package to its specification only and hide the actual programming
aspect.A package follows some rules of object-oriented programming, and it gives pro-
grammers some object-oriented capabilities. A package compiles successfully even
without a body if the specification compiles. When an object in the package is refer-
enced for the first time, the entire package is loaded into memory. All package ele-
ments are available from that point on, because the entire package stays in memory.
This one-time loading improves performance and is very useful when the functions and
procedures in it are accessed frequently.The package also follows top-down design.

Structure of a Package

A package provides an extra layer to a module. A module has a header and a body,
whereas a package has a specification and a body. A module’s header specifies the
name and the parameters, which tell us how to call that module. Similarly, the pack-
age specification tells us how to call different modules within a package.

Package Specification

A package specification does not contain any code, but it does contain information
about the elements of the package. It contains definitions of functions and proce-
dures, declarations of global or public variables, and anything else that can be de-
clared in a PL/SQL block’s declaration section. The objects in the specification
section of a package are called public objects. The general syntax is

CREATE [OR REPLACE] PACKAGE packagename
IS

[constant, variable and type declarations]
[exception declarations]
[cursor specifications]
[function specifications]
[procedure specifications]

END [packagename];

For example,

PACKAGE bb_team
IS total_players CONSTANT INTEGER := 12;

ShahCh14v3.qxd 4/16/04 12:04 PM Page 324

Packages 325

player_on_dl EXCEPTION;
FUNCTION team_average(points IN NUMBER, players IN NUMBER)

RETURN NUMBER;
END bb_team;

The package specification for the course_info package in Figure 14-10 contains
the specification of a procedure called FIND_TITLE and functions HAS_PREREQ
and FIND_PREREQ. The COURSE_INFO package contains three modules in all.

SQL> CREATE OR REPLACE PACKAGE COURSE_INFO
2 AS
3 PROCEDURE FIND_TITLE
4 (I_ID IN COURSE.COURSEID%TYPE,
5 O_TITLE OUT COURSE.TITLE%TYPE);
6 FUNCTION HAS_PREREQ
7 (I_ID IN COURSE.COURSEID%TYPE)
8 RETURN BOOLEAN;
9 FUNCTION FIND_PREREQ

10 (I_ID IN COURSE.COURSEID%TYPE)
11 RETURN VARCHAR2;
12 END COURSE_INFO;
13 /

Package created.

SQL>

Figure 14-10 Package specification.

Package Body

A package body contains actual programming code for the modules described in
the specification section. It also contains code for the modules not described in the
specification section.The module code in the body without a description in the spec-
ification is called a private module, or a hidden module, and it is not visible outside
the body of the package.

The general syntax of a package body is

PACKAGE BODY packagename
IS

[variable and type declarations]
[cursor specifications and SELECT queries]
[header and body of functions]
[header and body of procedures]

[BEGIN
executable statements]

ShahCh14v3.qxd 4/16/04 12:04 PM Page 325

326 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

[EXCEPTION
exception handlers]

END [packagename];

As a field is to a record, so an object is to a package. When you reference an
object in a package, you must qualify it with the name of that package using dot no-
tation. If you do not use dot notation to reference an object, the compilation will
fail.Within the body of a package, you do not have to use dot notation for that pack-
age’s objects, but you definitely have to use dot notation to reference an object from
another package. For example,

IF bb_team.total_players < 10 THEN

For example,

EXCEPTION
WHEN bb_team.player_on_dl THEN

where total_players and player_on_dl are modules/objects in the bb_team package.
There is a set of rules that you must follow in writing a package’s body:

� The variables, constants, exceptions, and so on declared in the specification
must not be declared again in the package body.

� The number of cursor and module definitions in the specification must
match the number of cursor and module headers in the body.

� Any element declared in the specification can be referenced in the body.

In Figures 14-10 and 14-11, package specification and body, respectively, are
shown for the course_info package. The calls to a procedure and a function in the
course_info package are shown in Figures 14-12 and 14-13, respectively.

In Figure 14-12, a call is made to the procedure FIND_TITLE of the
COURSE_INFO package in Figure 14-11. The procedure is passed V_COURSEID
as an IN parameter. If CourseId is invalid, the procedure throws an exception and
then handles that exception with an appropriate message. If CourseId is valid, the
OUT parameter V_TITLE is assigned course title.

In Figure 14-13, a call is made to the function HAS_PREREQ of the COURSE_
INFO package with one parameter,V_COURSEID. If course does not have a prereq-
uisite, the function displays the appropriate message. If course does not exist, an excep-
tion is thrown in the function body, and the message is displayed. The function returns
FALSE in both cases.The function returns TRUE if the prerequisite exists. If TRUE is
returned, another function, FIND_PREREQ, is called with the V_COURSEID pa-
rameter. The function returns concatenated prerequisite ID and title. Figure 14-13
shows output from all three situations mentioned above.

You can also use the EXECUTE command to run a package’s procedure:

EXECUTE packagename.procedurename

ShahCh14v3.qxd 4/16/04 12:04 PM Page 326

Packages 327

SQL> CREATE OR REPLACE PACKAGE BODY COURSE_INFO AS
2 PROCEDURE FIND_TITLE
3 (I_ID IN COURSE.COURSEID%TYPE, O_TITLE OUT COURSE.TITLE%TYPE) IS
4 BEGIN
5 SELECT TITLE INTO O_TITLE FROM COURSE WHERE COURSEID = I_ID;
6 EXCEPTION
7 WHEN OTHERS THEN
8 DBMS_OUTPUT.PUT_LINE(I_ID || ’ not found.’);
9 END FIND_TITLE;

10 --
11 FUNCTION HAS_PREREQ
12 (I_ID IN COURSE.COURSEID%TYPE) RETURN BOOLEAN IS
13 V_PREREQ VARCHAR2(6);
14 BEGIN
15 SELECT NVL(PREREQ, ’NONE’) INTO V_PREREQ
16 FROM COURSE WHERE COURSEID = I_ID;
17 IF V_PREREQ = ’NONE’ THEN
18 DBMS_OUTPUT.PUT_LINE(’No prerequisite’);
19 RETURN FALSE;
20 ELSE RETURN TRUE;
21 END IF;
22 EXCEPTION
23 WHEN NO_DATA_FOUND THEN
24 DBMS_OUTPUT.PUT_LINE(’Course: ’ || I_ID || ’ does not exist’);
25 RETURN FALSE;
26 END HAS_PREREQ;
27 --
28 FUNCTION FIND_PREREQ
29 (I_ID IN COURSE.COURSEID%TYPE) RETURN VARCHAR2 IS
30 V_ID VARCHAR2(6);
31 V_TITLE VARCHAR2(25);
32 V_PRE VARCHAR2(30);
33 BEGIN
34 SELECT NVL(P.COURSEID, ’NONE’), NVL(P.TITLE, ’NONE’)
35 INTO V_ID, V_TITLE FROM COURSE C, COURSE P
36 WHERE C.PREREQ = P.COURSEID AND C.COURSEID = I_ID;
37 V_PRE := V_ID || ’--’ || V_TITLE;
38 RETURN V_PRE;
39 EXCEPTION
40 WHEN OTHERS THEN RETURN ’NONE’;
41 END;
42 END COURSE_INFO;
43 /

Package body created.

Figure 14-11 Package body.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 327

328 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

TRIGGERS

A database trigger, known simply as a trigger, is a PL/SQL block. It is stored in the
database and is called automatically when a triggering event occurs. A user cannot
call a trigger explicitly. The triggering event is based on a Data Manipulation Lan-
guage (DML) statement, such as INSERT, UPDATE, or DELETE.A trigger can be
created to fire before or after the triggering event. For example, if you design a trig-
ger to execute after you INSERT a new employee in the EMPLOYEE table, the
trigger executes after the INSERT statement. The execution of a trigger is also
known as firing the trigger. The general syntax is

CREATE [OR REPLACE] TRIGGER triggername
BEFORE | AFTER | INSTEAD OF triggeringevent ON table|view

[FOR EACH ROW]
[WHEN condition]

DECLARE
Declaration statements

BEGIN
Executable statements

EXCEPTION
Exception-handling statements

END;

SQL> /* Anonymous block calls
DOC> procedure FIND_TITLE in package COURSE_INFO */
SQL> DECLARE

2 V_COURSEID COURSE.COURSEID%TYPE := ’&P_COURSEID’;
3 V_TITLE COURSE.TITLE%TYPE;
4 BEGIN
5 COURSE_INFO.FIND_TITLE(V_COURSEID, V_TITLE);
6 IF V_TITLE IS NOT NULL THEN
7 DBMS_OUTPUT.PUT_LINE(V_COURSEID || ’: ’ || V_TITLE);
8 END IF;
9 END;

10 /
Enter value for p_courseid: CIS265
CIS265: Systems Analysis

PL/SQL procedure successfully completed.

SQL> /
Enter value for p_courseid: CIS100
CIS100 not found.

PL/SQL procedure successfully completed.

SQL>

Figure 14-12 Call to procedure in the package of Figure 14-11.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 328

Triggers 329

SQL> /* Anonymous block calls function HAS_PREREQ
DOC> and function FIND_PREREQ in package COURSE_INFO */
SQL> DECLARE

2 V_FLAG BOOLEAN;
3 V_COURSEID COURSE.COURSEID%TYPE := ’&P_COURSEID’;
4 V_TITLE VARCHAR2(30);
5 BEGIN
6 V_COURSEID := UPPER(V_COURSEID);
7 V_FLAG := COURSE_INFO.HAS_PREREQ(V_COURSEID);
8 IF V_FLAG = TRUE THEN
9 V_TITLE := COURSE_INFO.FIND_PREREQ(V_COURSEID);

10 DBMS_OUTPUT.PUT_LINE(’Course: ’ || V_COURSEID);
11 DBMS_OUTPUT.PUT_LINE(’Pre-Requisite - ’ || V_COURSEID);
12 END IF;
13 END;
14 /

Enter value for p_courseid: CIS265
Course: CIS265
Pre-Requisite - CI5253

PL/SQL procedure successfully completed.

SQL> /
Enter value for p_courseid: CIS253
No prerequisite

PL/SQL procedure successfully completed.

SQL> /
Enter value for p_courseid: CIS999
Course: CIS999 does not exist

PL/SQL procedure successfully completed.

SQL>

Figure 14-13 Call to functions in the package of Figure 14-11.

where CREATE means you are creating a new trigger and REPLACE means
you are replacing an existing trigger. The key word REPLACE is optional, and
you should only use it to modify a trigger. If you use REPLACE and a procedure,
function, or package exists with the same name, the trigger replaces it. If you cre-
ate a trigger for a table and then decide to modify it and associate it with another
table, you will get an error. If a trigger already exists in one table, you cannot re-
place it and associate it with another table.

A trigger is very useful in generating values for derived columns, keeping
track of table access, preventing invalid entries, performing validity checks, or

ShahCh14v3.qxd 4/16/04 12:04 PM Page 329

330 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

maintaining security. There are some restrictions, however, involving creation of a
trigger:

• A trigger cannot use a Transaction Control Language statement, such as
COMMIT, ROLLBACK, or SAVEPOINT. All operations performed by a
trigger become part of the transaction.The trigger operations get committed
or rolled back with the transaction.

• A procedure or function called by a trigger cannot perform Transaction
Control Language statements.

• A variable in a trigger cannot be declared with LONG or LONG RAW data
types.

BEFORE Triggers

The BEFORE trigger is fired before execution of a DML statement. The BEFORE
trigger is useful when you want to plug into some values in a new row, insert a cal-
culated column into a new row, or validate a value in the INSERT query with a
lookup in another table.

Figure 14-14 is an example of a trigger that fires before a new row is inserted
into a table. If a new employee is being added to the EMPLOYEE table, you can use
a trigger to get the next employee number from the sequence, use SYSDATE as the
employee’s hire date, and so on.The trigger in Figure 14-14 fires before the INSERT
statement.The naming convention used in the example uses the table name the trig-
ger is for, followed by bi for “before insert,” and then the word trigger.A trigger uses
a pseudorecord called :NEW, which allows you to access the currently processed
row. The type of record :NEW is tablename%TYPE. In this example, the type of
:NEW is employee%TYPE. The columns in this :NEW record are referenced with
dot notation (e.g., :NEW.EmployeeId).

SQL> CREATE OR REPLACE TRIGGER EMPLOYEE_BI_TRIGGER
2 BEFORE INSERT ON EMPLOYEE
3 FOR EACH ROW
4 DECLARE
5 V_EMPID EMPLOYEE.EMPLOYEEID%TYPE;
6 BEGIN
7 SELECT EMPLOYEE_EMPLOYEEID_SEQ.NEXTVAL
8 INTO V_EMPID FROM DUAL;
9 :NEW.EMPLOYEEID := V_EMPID;

10 :NEW.HIREDATE := SYSDATE;
11 END;
12 /

Trigger created.

SQL>

Figure 14-14 BEFORE trigger.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 330

Triggers 331

The trigger employee_bi_trigger provides values of EmployeeId and Hire-
Date, so you need not include those values in your INSERT statement. If you have
many columns that can be assigned values via a trigger, your INSERT statement will
be shortened considerably. In Figure 14-15, a row is inserted in the EMPLOYEE
table without values for EmployeeId and HireDate columns. Those columns are
given value with firing of the BEFORE trigger of Figure 14-14.

SQL> INSERT INTO EMPLOYEE
2 (LNAME, FNAME, POSITIONID, SUPERVISOR, SALARY, DEPTID, QUALID)
3 VALUES
4 (’ZEE’, ’SONIA’, 3, 543, 100000, 20, 2);

1 row created.

SQL> SET LINESIZE 200
SQL> SELECT * FROM EMPLOYEE WHERE LNAME=’ZEE’;

EMPLOYEEID LNAME FNAME POSITIONID SUPERVISOR
- -

546 ZEE SONIA 3 543

SQL>

Figure 14-15 BEFORE trigger—row inserted.

AFTER Triggers

An AFTER trigger fires after a DML statement is executed. It utilizes the built-in
Boolean functions INSERTING, UPDATING, and DELETING. If the triggering
event is one of the three DML statements, the function related to the DML state-
ment returns TRUE and the other two return FALSE. For example, if the current
DML statement is INSERT, then INSERTING returns TRUE, but DELETING
and UPDATING return FALSE.

The example in Figure 14-16 uses an existing table named TRANSHISTORY,
which keeps track of transactions performed on a table. It keeps track of updates and
deletions, the user who performs them, and the dates on which they are performed.
The trigger is named employee_adu_trigger, where adu stands for “after delete or up-
date.” The trigger uses the transaction type based on the last DML statement. It also
plugs in the user name and today’s date. The information is then inserted in the
TRANSHISTORY table. Figure 14-17 shows rows inserted in the TRANSHISTORY
table on use of DELETE and UPDATE statements by trigger.

For the example in Figure 14-14, we used FOR EACH ROW. Such a trigger is
known as a row trigger. If it is based on INSERT, the trigger fires once for every
newly inserted row. If it is based on UPDATE statement and the UPDATE affects
five rows, the trigger is fired five times, once for each affected row. In Figure 14-16,
we did not use a FOR EACH ROW, clause. Such a trigger is known as a statement
trigger. A statement trigger is fired only once for the statement, irrespective of the
number of rows affected by the DML statement.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 331

332 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

SQL> CREATE OR REPLACE TRIGGER EMPLOYEE_ADU_TRIGGER
2 AFTER DELETE OR UPDATE ON EMPLOYEE
3 DECLARE
4 V_TRANSTYPE VARCHAR2(6);
5 BEGIN
6 IF DELETING THEN
7 V_TRANSTYPE := ’DELETE’;
8 ELSIF UPDATING THEN
9 V_TRANSTYPE := ’UPDATE’;

10 END IF;
11 INSERT INTO TRANSHISTORY
12 VALUES (’EMPLOYEE’, V_TRANSTYPE, USER, SYSDATE);
13 END;
14 /

Trigger created.

SQL>

Figure 14-16 AFTER trigger.

SQL> DELETE FROM EMPLOYEE
2 WHERE UPPER(LNAME) = ’VIQUEZ’;

1 row deleted.

SQL> SELECT * FROM TRANSHISTORY;

TABLENAME TRANSTYPE USER_NAME TRAN_DATE
----------------- ----------------- ------------------ -----------------
EMPLOYEE DELETE NSHAH 05-DEC-03

SQL> UPDATE EMPLOYEE
2 SET COMMISSION = SALARY * 0.10
3 WHERE EMPLOYEEID = 547;

1 rows updated.

SQL> SELECT * FROM TRANSHISTORY;

TABLENAME TRANSTYPE USER_NAME TRAN_DATE
----------------- ----------------- ------------------ -----------------
EMPLOYEE DELETE NSHAH 05-DEC-03
EMPLOYEE UPDATE NSHAH 05-DEC-03

SQL>

Figure 14-17 AFTER trigger—in action.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 332

Triggers 333

In Figure 14-17, you see the workings of the AFTER TRIGGER of Figure 14-16.
A row is deleted from the EMPLOYEE table, and the trigger inserts a row in the
TRANSHISTORY table. Then, a row is updated in the EMPLOYEE table, and the
trigger inserts another row in the TRANSHISTORY table.

INSTEAD OF Trigger

The BEFORE and AFTER triggers are based on database tables. From version 8i
onward, Oracle provides another type of trigger called an INSTEAD OF trigger,
which is not based on a table but is based on a view (covered in Chapter 9). The IN-
STEAD OF trigger is a row trigger. If a view is based on a SELECT query that con-
tains set operators, group functions, GROUP BY and HAVING clauses, DISTINCT
function, join, and/or a ROWNUM pseudocolumn, data manipulation is not possi-
ble through it.

An INSTEAD OF trigger is used to modify a table that cannot be modified
through a view. This trigger fires “instead of” triggering DML statements, such as
DELETE, UPDATE, or INSERT.

In Figure 14-18, a complex view is created with a SELECT query and an outer
join. FacultyId 235, 333, and 444 are not used in the STUDENT table; in other
words, there is no “child” row in STUDENT table for those faculty members. Facul-
tyId 235 and 333 are not used in the CRSSECTION table either. The DELETE
statement to delete Faculty Id 235 in Figure 14-18 returned an error message. We
will accomplish deletion of row by creating an INSTEAD OF trigger.

SQL> CREATE OR REPLACE VIEW STUDENT_FACULTY
2 AS
3 SELECT S.STUDENTID, S.LAST, S.FIRST, F.FACULTYID, F.NAME
4 FROM STUDENT S, FACULTY F
5 WHERE S.FACULTYID(+) = F.FACULTYID;

View created.

SQL> DELETE FROM student_faculty WHERE FacultyId = 235;
DELETE FROM student_faculty WHERE FacultyId = 235

*
ERROR at line 1:
ORA-01752: cannot delete from view without exactly one key-preserved table

SQL>

Figure 14-18 No data manipulation through complex view.

In Figure 14-19, an INSTEAD OF DELETE trigger is created on the
STUDENT_FACULTY view. Now, when the DELETE statement is issued to
delete a faculty member with the complex view, the trigger is fired, and the faculty

ShahCh14v3.qxd 4/16/04 12:04 PM Page 333

334 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

member is deleted without any error message. Notice the use of pseudorow called
:OLD in this trigger, which gets the value of FacultyId 235 from the DELETE state-
ment that the user had issued.

DATA DICTIONARY VIEWS

Oracle maintains a very informative Data Dictionary.A few Data Dictionary views are
useful for getting information about stored PL/SQL blocks. The following are exam-
ples of queries to USER_PROCEDURES (for named blocks), USER_TRIGGERS
(for triggers only), USER_SOURCE (for all source codes), USER_OBJECTS(for any
object), and USER_ERRORS (for current errors) views:

SELECT Object_Name, Procedure_Name FROM USER_PROCEDURES;
SELECT Trigger_Name, Trigger_Type, Triggering_Event, Table_Name, Trigger_Body

FROM USER_TRIGGERS;
SELECT Name, Type, Line, Text FROM USER_SOURCE;
SELECT Object_Name, Object_Type FROM USER_OBJECTS;
SELECT Name, Type, Sequence, Line, Position FROM USER_ERRORS;

These views can provide information ranging from the name of an object to the en-
tire source code. Use the DESCRIBE command to find out the names of columns in
each Data Dictionary view, and issue SELECT queries according to the information
desired.

SQL> CREATE OR REPLACE TRIGGER faculty_delete_iod
2 INSTEAD OF DELETE ON student_faculty
3 FOR EACH ROW
4 BEGIN
5 DELETE FROM faculty
6 WHERE FacultyId = :OLD.FacultyId;
7 END;
8 /

Trigger created.

SQL> DELETE FROM student_faculty WHERE FacultyId = 235;

1 row deleted.

SQL>

Figure 14-19 Data manipulation and the INSTEAD OF Trigger.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 334

In a Nutshell . . . 335

IN A NUTSHELL . . .

� A procedure is a named PL/SQL module that can perform one or more tasks.
� A procedure call contains the name of the procedure along with the list of

parameters enclosed within parentheses.
� A procedure body, like an anonymous block, consists of declaration, exe-

cutable, and exception sections.
� There are three types of parameters: The IN type passes a value into a sub-

program, the OUT type passes a value to the calling program, and the IN
OUT type passes a value into a subprogram and returns a value.

� The formal parameters in a module’s header must match the actual parame-
ters in the call to the module, with positional or named notation.

� A function is a PL/SQL named module that always returns a value to the
calling program.

� A function can return a scalar data type, such as VARCHAR2, NUMBER,
BINARY_INTEGER, and BOOLEAN, or a complex or composite data
type, such as a table, a record, a nested table, VARRAY, or LOB.

� A function call is made via an executable PL/SQL statement, such as an as-
signment or an IF statement.

� A function or a procedure is stored in memory by executing it first. It is then
called by another module.

� A package is a collection of PL/SQL objects, which are either public (can be
called by an outside module) or private (known only to the package module).

� The structure of a package includes a specification and a body.The members
in a package are referenced with the package name as a qualifier and dot
notation.

� A database trigger, or simply a trigger, is stored in the database and is called
implicitly when a triggering event occurs.

� A trigger is based on a DML statement, such as INSERT, DELETE, or
UPDATE.

� A BEFORE trigger is fired before execution of a DML statement, and an
AFTER trigger is fired after execution of a DML statement.

� A row trigger is fired once for each affected row, whereas a statement trig-
ger is fired only once, irrespective of the number of rows affected by the
DML statement.

� An INSTEAD OF trigger is based on a view instead of a database table.
� Oracle provides the user with many Data Dictionary views for named blocks,

such as USER_PROCEDURES, USER_TRIGGERS, USER_SOURCE,
USER_OBJECTS, and USER_ERRORS.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 335

336 Chap. 14 PL/SQL Named Blocks: Procedure, Function, Package, and Trigger

EXERCISE QUESTIONS

True/False:
1. A parameter of type IN passes a read-only value to a module.
2. A parameter of type OUT is assigned a value only if the called module is performed

successfully.
3. If a procedure has an IN parameter, it must have an OUT parameter.
4. A function always has an OUT parameter to return a value.
5. V_EMPNAME IN VARCHAR2(25) is a valid formal parameter definition in the head-

er of a module.
6. A procedure does not require a RETURN type, but a function does.
7. Control of execution shifts from a function to the calling program with the RETURN

statement.
8. All public procedures and functions in a package body must be declared in the package

specification.
9. A trigger is fired either before or after a triggering event.

10. A trigger based on a SELECT statement always fires automatically after the statement’s
execution.

Answer the Following Questions:
1. Name three types of PL/SQL modules. Describe each module with one characteristic

specific to the module.
2. What are the differences between a procedure and a function?
3. Name three types of parameters. List the characteristics of each type.
4. How are actual parameters and formal parameters associated? Explain with an example.
5. What are the benefits of using a package? Describe two parts of a package and their

contents.
6. What is a trigger? Explain the working of BEFORE and AFTER triggers.
7. How are INSTEAD OF triggers different from BEFORE and AFTER triggers?
8. What Data Dictionary tables/views are available to get information about named blocks?

Give information stored by those views/tables.

LAB ACTIVITY

1. Write a procedure that is passed a student’s identification number and returns the stu-
dent’s full name and phone number from the STUDENT table to the calling program.
Also, write an anonymous block with the procedure call.

2. Write a function, and pass a department number to it. If the DEPT table does not con-
tain that department number, return a FALSE value; otherwise, return a TRUE value.
Print the appropriate message in the calling program based on the result.

3. Write a package that contains a procedure and a function. The procedure is passed a
room number. If the room number exists, the procedure gets the capacity of the room

ShahCh14v3.qxd 4/16/04 12:04 PM Page 336

Lab Activity 337

and the building name from the LOCATION table. If the room number does not exist,
the procedure performs the appropriate exception-handling routine. The function is
passed a csid and returns the maximum number of seats available in the course section.

4. Write a trigger that is fired before the DML statement’s execution on the EMPLOYEE
table. The trigger checks the day based on SYSDATE. If the day is Sunday, the trigger
does not allow the DML statement’s execution and raises an exception. Write the appro-
priate message in the exception-handling section.

5. Write a trigger that is fired after an INSERT statement is executed for the STUDENT
table. The trigger writes the new student’s ID, users name, and system date in a table
called TRACKING. (Note: You must create the TRACKING table first.)

6. Create a complex view EMP_DEP_VIEW using an outer join between the EMPLOY-
EE and DEPENDENT tables with employee names and dependent birthdates and rela-
tions. The outer join will also return employees without any dependents. Now, create an
INSTEAD OF trigger based on EMP_DEP_VIEW to enable you to delete employee
433 through view.

ShahCh14v3.qxd 4/16/04 12:04 PM Page 337

PART 4
MISCELLANEOUS TOPICS

15

Oracle with Java:

A Tutorial on JDBC

and SQLj

IN THIS CHAPTER . . .

� A background overview of Java is given.
� Connection to the Oracle database through Java is covered.
� Steps to connect to Oracle with Sun’s JDBC driver are shown.
� Set up of OracleDriver for Java and use of Oracle’s thin client are outlined.
� Oracle’s SQLj is introduced.
� Use of SQLj iterators is shown.
� PL/SQL blocks are accessed through SQLj.

The purpose of this chapter is not to teach the Java language but to illustrate Java’s
ability to connect to the Oracle database with drivers provided by Sun and Oracle.
Java is a language for Web-based applications, and it is an integral part of the Oracle9i
environment. With Oracle8i, the SQL statement CREATE JAVA was added for cre-
ating a Java source, class, or resource. Familiarity with Java is required for under-
standing terminology and code samples given here.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 338

JDBC 339

JAVA: A PROGRAMMING LANGUAGE

The Java language was developed by James Gosling for Sun Microsystems. The lan-
guage was intended for the consumer electronics market but later became a general-
purpose business language and a language for Web-based Internet programs. Java is
a portable programming language with a broad set of predefined classes and meth-
ods that handle most of the fundamental requirements of a programmer. Some of the
features of Java include platform independence, object orientation, multithreading,
security, and the ability to connect to various database servers.With Java, you can cre-
ate stand-alone applications, applets, servlets, Java Server Pages (JSPs), and Enter-
prise Java Beans. Database connectivity is a very important ingredient for
server-side programming. If you know C/C++ language, the syntax of Java is very
similar—but the similarity ends there! I have found my experience with Java to be
very positive and interesting. Whether you use the command-line Java Development
Kit (JDK) or a GUI-based Integrated Development Environment (IDE), working
with Java is fun. In this chapter, Java code is created with JBuilder8, an IDE from Bor-
land Corporation. Oracle Corporation markets a similar product called JDeveloper,
which was originally licensed from Borland Corporation.

JDBC

JDBC is an Application Programming Interface (API) for database access in Java.
Using the JDBC 3.0 API, you can access virtually any data source, from relational
databases to spreadsheets to flat files. JDBC technology also provides a common
base on which tools and alternate interfaces can be built.

The JDBC 3.0 API is comprised of two packages:

1. The java.sql package.
2. The javax.sql package.

Java contains a rich library of classes with which to send SQL statements to the data-
base server, such as Oracle Server, for data retrieval or manipulation. Sun Microsys-
tems provides JDBC drivers with Java. Many database vendors (Oracle, Microsoft,
Sybase, and others) and some third-party vendors provide JDBC drivers, which im-
plement JDBC API for various database engines. The Java applications with JDBC
are portable and are independent of the database server.

The JDBC–ODBC Bridge allows applications written in the Java program-
ming language to use the JDBC API with many existing ODBC drivers. The Bridge
is itself a driver based on JDBC technology (“JDBC driver”) that is defined in the
class sun.jdbc.odbc.JdbcOdbcDriver. The Bridge defines the JDBC subprotocol of
ODBC. In this chapter, two examples of JDBC applications are given, one with

ShahCh15v3.qxd 4/16/04 12:05 PM Page 339

340 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

Sun’s sun.jdbc.odbc.JdbcOdbcDriver and another with Oracle’s oracle.jdbc.driver.
OracleDriver. There are five steps in creating a JDBC application:

1. Import JDBC classes or packages with JDBC classes.
2. Load JDBC drivers.
3. Establish connection with the database.
4. Execute SQL statements/interact with the database.
5. Close connection.

Importing Package or JDBC classes

In Java, all classes from the java.lang package are readily available. All other pack-
ages and their classes must be imported to make them available to the program. For
example, to import the JOptionPane class from the javax.swing package, you would
issue the following statement:

import javax.swing.JOptionPane;

To import the entire java.sql package and all its classes, you would type

import java.sql.*;

Loading JDBC Drivers

A Java program may load many JDBC drivers to connect with different database
servers. The syntax for loading a JDBC driver is

Class.forName(“drivername”);

For example,

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

or

Class.forName(“oracle.jdbc.driver.OracleDriver”);

Connecting to the Oracle Database

The DriverManager class manages JDBC drivers.After a JDBC driver is loaded, the
getConnection() classwide method of the DriverManager class is used for establish-
ing a connection to the database. The general syntax is

Connection conn = DriverManager.getConnection(url, user, password)

ShahCh15v3.qxd 4/16/04 12:05 PM Page 340

JDBC 341

For example, using Sun’s driver,

Connection conn =
DriverManager.getConnection(“jdbc:odbc:shah_ora”, userName, passWord);

where “jdbc:odbc:shah_ora” is the url suited for Sun’s jdbc.odbc.JdbcOdbcDriver.The
url contains data source name shah_ora. Data source is created with Windows operat-
ing system’s Administrative Tool Data Sources (ODBC) in the control panel. ODBC
(Open DataBase Connectivity) is a programming interface that enables applications to
access data in database-management systems that use SQL as a data access standard.
Username and password can be passed as string objects or hard-coded literals.

Another example, using Oracle’s driver, would be

Connection conn = DriverManager.getConnection
(“jdbc:oracle:thin:@nshah-monroe:1521:oracle”,”nshah”,”india_usa”);

where url is suited for Oracle’s oracle.jdbc.driver.OracleDriver and it contains driv-
er type thin, server name nshah-monroe, default port number 1521, and database sid
oracle. The username and password are hard coded, however, which you might not
want to do. The hard-coded fictitious password ‘india_usa’ is used in this chapter’s
examples, but it is just an example. The server name nshah-monroe in this example
is the name of the local machine, where Oracle9i resides. If you want to connect to
the Oracle server from your PC, you will need the server name as well as the domain
name. For example, if the server name is oracleadmin at domain indo-us.edu, you
will use oracleadmin.indo-us.edu.

When getConnection() method is called with a url, DriverManager locates a
suitable driver. If it does not find a suitable driver, it throws an exception. If it does
find a suitable driver, the Connection object (referenced by conn) is returned, and a
connection is established. The interaction with the database is possible through this
connection object. One Java application may have multiple connections with the
same database, and it may have connections with different databases.

Interacting with the Oracle Database

The Connection object conn is used to interact with the database using SQL state-
ments. There are three classes for sending SQL statements to the server:

1. Statement class for SQL statements without parameters.
2. PreparedStatement class for SQL statements with different parameters.
3. CallableStatement class for executing stored procedures.

Statement Class. This class is used for SQL statements without parame-
ters., such as SELECT, INSERT, DELETE, UPDATE, or CREATE TABLE. First,

ShahCh15v3.qxd 4/16/04 12:05 PM Page 341

342 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

a statement object is created with the Connection class’ instance method create-
Statement(). For example,

Statement stmt = conn.createStatement();

Then, executeQuery() method is used with Statement object stmt for a SELECT
query, and executeUpdate() method is used for an INSERT, DELETE, UPDATE
or CREATE TABLE statement. For example,

int n = stmt.executeUpdate(query);

You can also use conn.commit(), conn.setAutoCommit and
conn.rollback() methods after using Data Manipulation Language (DML) statements
with stmt.executeUpdate(). These methods have same effect that you have seen with
COMMIT, SET AUTOCOMMIT and ROLLBACK statements in SQL.

ResultSet Class. When stmt.executeQuery(SELECT-query) is executed,
the data are retrieved into a ResultSet object. For example,

ResultSet rset = stmt.executeQuery(select_query);

where ResultSet class object rset contains data retrieved by the SELECT-query.The
rows in the data are retrieved in sequence, and the columns in each row are posi-
tioned. The pointer is positioned before the first row of data. With every call to the
next() method, the pointer moves to the next row. The ResultSet class contains a
few useful methods:

getString(n) Numeric position n is used to get data from a column.
wasNull() Checks last column for a null value, and returns true or false
accordingly.
findColumn(column) Returns the position of a column.

ResultSetMetaData Class. The ResultSetMetaData class is used to get
metadata information about ResultSet object rset. The ResultSetMetaData object
rsmeta is created with the following statement:

ResultSetMetaData rsmeta = rset.getMetaData();

This class provides the user with many methods to get metadata information.
For example,

getColumnCount() Returns the number of columns retrieved into result set.
getColumnLabel(n) Returns the column title for dispay based on column
position parameter n.

ON ƒ OFF,

1true ƒ false2,

ShahCh15v3.qxd 4/16/04 12:05 PM Page 342

JDBC 343

getColumnName(n) Returns the column name based on column position
parameter n.
getColumnType(n) Returns the column’s data type based on position
parameter n.
getColumnDisplaySize(n) Returns column’s size based on position parameter n.
getTableName(n) Returns name of table based on column position parameter n.
getPrecision(n) Returns the number of digits to the left of decimal point.
getScale(n) Returns the number of digits to the right of decimal point.

PreparedStatement Class. The PreparedStatement class is a derived class
(or subclass) of the Statement class. It allows execution of the same SQL statement
many times with different parameters. An object of the PreparedStatement class is
created with the prepareStatement(sql_statement) method, where sql_statement may
contain parameters. The statement is already compiled for faster execution. The pa-
rameters can be set with method like setXYZ(n, val), where n is the position of pa-
rameter, val is a variable or literal, and XYZ is a data type like String, Int, Float, and
so on. For example,

PreparedStatement pstmt =
conn.prepareStatement(“INSERT INTO dept VALUES(?, ?)”);
pstmt.setInt(1, 99); // first parameter set to 99
pstmt.setString(2, “Athletics”); // second parameter set to ‘Athletics’
pstmt.executeUpdate();

After pstmt is built with setXYZ() methods, the executeUpdate() method is used
to execute the SQL statement.

CallableStatement Class. The CallableStatement class is a subclass of
the PreparedStatement class. It is used to execute PL/SQL anonymous or named
blocks. Its object is created with prepareCall() method. The IN parameters are set
with setXYZ() method that was used earlier with the superclass PreparedState-
ment. The OUT parameters are set with registerOutParameter(n, sTypeCode),
where n is the position and sTypeCode is the SQL type code defined in
java.sql.Types class. Once a callable statement is built with all parameter values or
type, it is executed. For example,

CallableStatement cstmt =
conn.prepareCall(“{? = call do_total(?, ?)}”); // function call
cstmt.registerOutParameter(1, Types.NUMBER); // OUT parameter
cstmt.setInt(2, v_sal); // IN parameter
cstmt.setInt(3, v_comm); // IN parameter
cstmt.execute();

ShahCh15v3.qxd 4/16/04 12:05 PM Page 343

344 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

Closing Connection

The JDBC session ends with closing the database connection. Before disconnecting
from the database, the stmt.close() method is used to close the ResultSet generated
by that statement. At last, the conn.close() method is used to close the connection
and release the JDBC resources.

SUN’S JDBC DRIVER AND THE ORACLE DATA SOURCE

Creating a Data Source in the Windows Control Panel

To make the program work with sun.jdbc.odbc.JdbcOdbcDriver, you must have the
Oracle driver in Oracle’s home directory, such as OraHome92.The typical installation
of Oracle installs this driver.

First, from My Computer, run the Windows Control Panel. In Control Panel,
double-click on the Administrative Tools icon, and then on Data Sources (ODBC)
to bring up the ODBC Data Source Administrator (see Fig. 15-1). Visual FoxPro

Figure 15-1 ODBC Data Source Administrator.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 344

Sun’s JDBC Driver and the Oracle Data Source 345

database is highlighted in the figure by default, but you are going to use a different
driver, which is not listed in Figure 15-1.

Second, click on the Add button to bring up the Create New Data Source dialog
box (see Fig. 15-2).

Figure 15-2 Create New Data Source.

Third, select the Oracle in OraHome92 driver, and click on the Finish button
to bring up the Oracle ODBC Driver Configuration dialog window. Type the values
for Data Source Name, Description, TNS Service Name, and User ID as shown in
Figure 15-3. Click on the Test Connection button to log in with a password, and test
the connection to the Oracle database. If the connection is successful, click on OK.

Your data source is created as shown in Figure 15-4. This data source name is
used later in the Java program for connectivity.

Sample Java Code

Figure 15-5 shows code for database connectivity to the Oracle database with Sun
Microsystem’s JDBC driver. The program loads then driver, then prompts the user
for a usename and password. The connection is established with url, username, and
password. The url includes the data source created in the previous section. The rows
are retrieved from the PHONE table with the executeQuery() method. The rows

ShahCh15v3.qxd 4/16/04 12:05 PM Page 345

346 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

Figure 15-3 Oracle ODBC Driver Configuration.

Figure 15-4 ODBC Data Source Administrator.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 346

Sun’s JDBC Driver and the Oracle Data Source 347

are read from the result set with the next() method and subsequently displayed
within the while loop.

Figure 15-6 shows rows from the PHONE table with an SQL query. Figure 15-7
shows rows from the same table with an embedded SQL statement in the Java program
of Figure 15-5.

package oracle;
import java.sql.*;
import java.io.*;
import javax.swing.*;
public class Connect {

public static void main(String[] args)
throws SQLException, IOException{

try {
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

}
catch (ClassNotFoundException e) {

System.out.println(“Could not load driver”);
}
String userName, passWord;
userName = JOptionPane.showInputDialog(“Oracle username: “).trim();
passWord = JOptionPane.showInputDialog(“Oracle password: “).trim();
Connection conn = DriverManager.getConnection

(“jdbc:odbc:shah_ora”, userName, passWord);
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery

(“SELECT LAST, FIRST, PHONE, RELATION FROM PHONE”);
while (rset.next()) {

System.out.println(rset.getString(1)+”\t”+rset.getString(2)+
“\t”+rset.getString(3)+”\t”+rset.getString(4));

}
stmt.close();
conn.close();

}
}

Figure 15-5 Java source with data source.

SQL> SELECT * FROM phone;

LAST FIRST PHONE RELATION
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SHAH NAMAN 609.555.1111 SON
JOHNSON KIM 732.555.2222 FRIEND
SHAH DHIRAJ 222.386.3260 FATHER
MATTHEWS MICKEY 407.555.3333 FRIEND

SQL>

Figure 15-6 Oracle table output.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 347

348 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

ORACLEDRIVER AND ORACLE thin DRIVER

Setting Up oracle.jdbc.driver.OracleDriver for SDK1.4
or JBuilder8

The oracle.jdbc.driver.OracleDriver is set up as follows:

1. After successful installation of Oracle8i or 9i, find the home directory (folder)
for ORACLE_HOME. It will be C:\ORACLE\ORA81 for Oracle8i and

Figure 15-7 Table output from Java.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 348

OracleDriver and Oracle thin Driver 349

C:\ORACLE\ORA90 or C:\ORACLE\ORA92 for Oracle9i. For example,
it is C:\oracle\ora92 on my computer.

2. Search for the CLASSES12.ZIP file under your Oracle home directory in
the JDBC\LIB directory. For example, the path on my computer is
c:\oracle\ora92\jdbc\lib\classes12.zip. You may use the Windows file name
search for file path.

3. Now, go to the LIB directory under Java’s home directory on your com-
puter. Java’s home directory will be C:\J2SDK1.4.1_01 for Sun’s command-
line Java Development Kit or C:\JBUILDER8\JDK1.4 for Borland’s
JBuilder IDE version 8. For example, the path to LIB folder on my com-
puter is c:\jbuilder8\jdk1.4\lib.

4. Copy the CLASSES12.ZIP file from the Oracle home to the Java home
directory. For example, for JBuilder8,

C:\> copy c:\oracle\ora92\jdbc\lib\classes12.zip c:\jbuilder8\jdk1.4\lib

For command-line Java,

C:\> copy c:\oracle\ora92\jdbc\lib\classes12.zip c:\j2sdk1.4.1_01\lib

5. If you are using command-line Java, set the following classpath to use
OracleDriver from the CLASSES12.ZIP file:

Set classpath = c:\j2sdk1.4.1_01\lib\classes12.zip;

If you are using JBuilder, follow the directions given here:
� In JBuilder8 IDE, create your project, application, or applet.
� Before executing your program, right-click on your project name (.jpx

file) in the Project Pane on the top left.
� Select Add files/packages from the pop-up menu.
� Select OracleDriver from the following folder path:

C:\jbuilder8\jdk1.4\lib\classes12.zip\oracle\jdbc\driver\

6. Now, follow the steps given below to add a new library (if you did not copy
the CLASSES12.ZIP file in the default library directory):
� Go to the Projects menu, and select Project Properties.
� Click on the Required Library tab.
� Click on the Add button.
� Click on the New button.
� Change the name text-box value to shahLib (or any other name).
� Click on the Add button.
� Click on the OK button.
� Select the path where the CLASSES12.ZIP file is saved.

Á

ShahCh15v3.qxd 4/16/04 12:05 PM Page 349

350 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

� Click on the OK button (you will see a new library path).
� Click on the OK button.
� Click on the OK button (you will see shahLib in the required library

listing).

The versions of the products mentioned in this section—Oracle9i, JBuilder8
and JDK1.4—can be downloaded for free from Oracle.com, Borland.com, and
Sun.com, respectively, for personal use or educational purposes only. Software com-
panies introduce new software releases frequently.When you follow the instructions
given here, substitute folder or directory names acoording to the software version
installed on your system. (Note: You must add the OracleDriver and library to each
project in JBuilder as given in Steps 5 and 6. You need not create the library again.)

Sample Java Code

Figure 15-8 shows Java code (similar to that in Figure 15-5) for database connectivity
with the Oracle database with Oracle’s JDBC driver. The program loads the driver,
then establishes a connection with the url and hard-coded username and password.

package oracle;
import java.sql.*;
import java.io.*;
public class Connect {

public static void main(String[] args)
throws SQLException, IOException{

try {
Class.forName(“oracle.jdbc.driver.OracleDriver”);

}
catch (ClassNotFoundException e) {

System.out.println(“Could not load driver”);
}
String user, pass;
Connection conn = DriverManager.getConnection

(“jdbc:oracle:thin:@nshah-monroe:1521:oracle”,”nshah”,”india_usa”);
Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery

(“SELECT LAST, FIRST, PHONE, RELATION FROM PHONE”);
while (rset.next()) {

System.out.println(rset.getString(1)+”\t”+rset.getString(2)+
“\t”+rset.getString(3)+”\t”+rset.getString(4));

}
stmt.close();
conn.close();

}
}

Figure 15-8 Java source with OracleDriver.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 350

Java Applet: Putting it all Together 351

The url contains the Oracle thin driver. The rows are retrieved from the PHONE
table with the executeQuery() method. The rows are read from the result set and
are subsequently displayed.

JAVA APPLET: PUTTING IT ALL TOGETHER*

In the following example, a Java applet is created with some of the classes described in
previous sections. The applet connects to a database to perform INSERT, SELECT,
and a search based on last name.

In Figure 15-9, LastNameSearch is used with a last name entered in a JTextField
object. The result is displayed in the jTextArea object. The interface uses four
JTextField objects for inputting Last, First, Phone, and Relation values.A JTextField ob-
ject is used for entering the username, and a JPasswordField object is used for entering

Figure 15-9 Java Applet in AppletViewer.

*Important: A good knowledge of Java language and swing components is essential to understand this code.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 351

352 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

the password for connecting to Oracle9i. These two objects are given value through
the text property, and they are disabled to prevent any changes to these values. Every
connection to the database uses these values for username and password. There are
four JButton objects.The AddRow button gets inputs from four text boxes and adds a
new row to the PHONE table. If any one of the four boxes is left blank, an error pops
up, and the insert operation is not performed. The LastNameSearch button gets the
last name input and searches through the table for matching rows. It displays matching
rows in the JTextArea object. If the last name field is left blank or no matching rows
are found, an appropriate message is displayed in the JTextArea object. The Clear-
TextOnly button clears the four JTextField objects. Finally, the DisplayPhoneList but-
ton is used to display the entire PHONE table. The username and password can be
hard-coded in the url, or the user can be asked to input values for the same.The input
portion is present in the source given below, but it is commented out:

package dataapplet;
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import javax.swing.*;
import java.sql.*;
import java.io.*;
public class AppletData extends Applet {

private boolean isStandalone = false;
JTextField jTextField1 = new JTextField();
JTextField jTextField2 = new JTextField();
JTextField jTextField3 = new JTextField();
JTextField jTextField4 = new JTextField();
JButton jButton1 = new JButton();
JLabel jLabel1 = new JLabel();
JLabel jLabel2 = new JLabel();
JLabel jLabel3 = new JLabel();
JLabel jLabel4 = new JLabel();
JButton jButton2 = new JButton();
JButton jButton3 = new JButton();
JLabel jLabel5 = new JLabel();
JTextArea jTextArea1 = new JTextArea();
JButton jButton4 = new JButton();
JButton jButton5 = new JButton();
JPasswordField jPasswordField1 = new JPasswordField();
JTextField jTextField5 = new JTextField();
JLabel jLabel6 = new JLabel();
JLabel jLabel7 = new JLabel();
//Get a parameter value

public String getParameter(String key, String def) {
return isStandalone ? System.getProperty(key, def) :

(getParameter(key) != null ? getParameter(key) : def);
}

ShahCh15v3.qxd 4/16/04 12:05 PM Page 352

Java Applet: Putting it all Together 353

//Construct the applet
public AppletData() {
}
//Initialize the applet
public void init() {

try {
jbInit();

}
catch(Exception e) {

e.printStackTrace();
}

}
//Component initialization
private void jbInit() throws Exception {

jTextField1.setBackground(Color.white);
jTextField1.setText(“”);
jTextField1.setBounds(new Rectangle(27, 42, 85, 20));
this.setLayout(null);
jTextField2.setBounds(new Rectangle(135, 41, 85, 20));
jTextField2.setText(“”);
jTextField3.setBounds(new Rectangle(28, 91, 85, 20));
jTextField3.setText(“”);
jTextField4.setBounds(new Rectangle(135, 90, 85, 20));
jTextField4.setText(“”);
jButton1.setBackground(SystemColor.activeCaption);
jButton1.setBounds(new Rectangle(238, 39, 136, 21));
jButton1.setFont(new java.awt.Font(“Dialog”, 1, 11));
jButton1.setText(“AddRow”);
jButton1.addActionListener(

new AppletData_jButton1_actionAdapter(this));
jLabel1.setFont(new java.awt.Font(“Dialog”, 1, 11));
jLabel1.setText(“Last”);
jLabel1.setBounds(new Rectangle(54, 23, 32, 17));
jLabel2.setBounds(new Rectangle(162, 22, 33, 17));
jLabel2.setFont(new java.awt.Font(“Dialog”, 1, 11));
jLabel2.setText(“First”);
jLabel3.setBounds(new Rectangle(48, 71, 41, 17));
jLabel3.setFont(new java.awt.Font(“Dialog”, 1, 11));
jLabel3.setText(“Phone”);
jLabel4.setBounds(new Rectangle(157, 71, 56, 17));
jLabel4.setFont(new java.awt.Font(“Dialog”, 1, 11));
jLabel4.setText(“Relation”);
jButton2.setBackground(SystemColor.activeCaption);
jButton2.setBounds(new Rectangle(238, 89, 136, 21));
jButton2.setFont(new java.awt.Font(“Dialog”, 1, 11));
jButton2.setText(“ClearTextOnly”);
jButton2.addActionListener(

new AppletData_jButton2_actionAdapter(this));

ShahCh15v3.qxd 4/16/04 12:05 PM Page 353

354 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

jButton3.setBackground(SystemColor.activeCaption);
jButton3.setBounds(new Rectangle(28, 262, 132, 29));
jButton3.setFont(new java.awt.Font(“Dialog”, 1, 11));
jButton3.setText(“DisplayPhoneList”);
jButton3.addActionListener(

new AppletData_jButton3_actionAdapter(this));
jLabel5.setFont(new java.awt.Font(“Dialog”, 1, 24));
jLabel5.setText(“Phone List”);
jLabel5.setBounds(new Rectangle(244, 8, 135, 27));
this.setBackground(Color.orange);
jTextArea1.setRequestFocusEnabled(false);
jTextArea1.setColumns(50);
jTextArea1.setTabSize(8);
jTextArea1.setBounds(new Rectangle(28, 117, 347, 134));
jButton5.addActionListener(

new AppletData_jButton5_actionAdapter(this));
jButton5.setText(“LastNameSearch”);
jButton5.addActionListener(

new AppletData_jButton5_actionAdapter(this));
jButton5.setFont(new java.awt.Font(“Dialog”, 1, 11));
jButton5.setBounds(new Rectangle(238, 64, 136, 21));
jButton5.setBackground(SystemColor.activeCaption);
jPasswordField1.setEnabled(false);
jPasswordField1.setText(“india_usa”);
jPasswordField1.setBounds(new Rectangle(291, 272, 70, 23));
jTextField5.setEnabled(false);
jTextField5.setText(“nshah”);
jTextField5.setBounds(new Rectangle(207, 273, 70, 22));
jLabel6.setFont(new java.awt.Font(“Dialog”, 1, 14));
jLabel6.setText(“UserName”);
jLabel6.setBounds(new Rectangle(206, 254, 77, 18));
jLabel7.setFont(new java.awt.Font(“Dialog”, 1, 14));
jLabel7.setText(“PassWord”);
jLabel7.setBounds(new Rectangle(291, 255, 74, 15));
this.add(jTextField1, null);
this.add(jTextField2, null);
this.add(jTextField3, null);
this.add(jTextField4, null);
this.add(jButton1, null);
this.add(jTextArea1, null);
this.add(jButton2, null);
this.add(jButton4, null);
this.add(jButton5, null);
this.add(jLabel5, null);
this.add(jLabel1, null);
this.add(jLabel3, null);
this.add(jLabel2, null);
this.add(jLabel4, null);

ShahCh15v3.qxd 4/16/04 12:05 PM Page 354

Java Applet: Putting it all Together 355

this.add(jLabel6, null);
this.add(jTextField5, null);
this.add(jLabel7, null);
this.add(jPasswordField1, null);
this.add(jButton3, null);

}
//Get Applet information
public String getAppletInfo() {

return “Applet Information”;
}
//Get parameter info
public String[][] getParameterInfo() {

return null;
}
/********************* ADDS a ROW **********************/
void jButton1_actionPerformed(ActionEvent e) throws Exception {
// user can be prompted to input username and password,
// but commented out here
/* String userName, passWord;

userName =
JOptionPane.showInputDialog(“Oracle username: “).trim();

passWord =
JOptionPane.showInputDialog(“Oracle password: “).trim(); */

try {
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

}
catch (ClassNotFoundException ex) {

System.out.println(“Could not load driver”);
}
Connection conn = DriverManager.getConnection

(“jdbc:odbc:shah_ora”,jTextField5.getText(),
jPasswordField1.getText());

PreparedStatement pstmt =
conn.prepareStatement(
“INSERT INTO phone VALUES(?,?,?,?)”); //statement with 4 parameters

String one = jTextField1.getText();
String two = jTextField2.getText();
String three = jTextField3.getText();
String four = jTextField4.getText();
if (one.equals(“”)||two.equals(“”)

||three.equals(“”)|| four.equals(“”))
{

JOptionPane.showMessageDialog
(null, “One or more fields are left blank”,”Error”, JOptionPane.ERROR_MESSAGE);

}
else { // 4 parameters set here

pstmt.setString(1, one);
pstmt.setString(2, two);

ShahCh15v3.qxd 4/16/04 12:05 PM Page 355

356 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

pstmt.setString(3, three);
pstmt.setString(4, four);
pstmt.executeUpdate(); // INSERT executed

}
conn.commit(); // commits insert operation
pstmt.close();
conn.close();
}
/***************** CLEARS ALL TEXT FIELDS *****************/
void jButton2_actionPerformed(ActionEvent e) {

jTextField1.setText(“”);
jTextField2.setText(“”);
jTextField3.setText(“”);
jTextField4.setText(“”);

}
/******************** DISPLAYS ALL ROWS *******************/
void jButton3_actionPerformed(ActionEvent e) throws SQLException{

jTextArea1.setText(“”);
try {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
}
catch (ClassNotFoundException ex) {

System.out.println(“Could not load driver”);
}
Connection conn =

DriverManager.getConnection(“jdbc:odbc:shah_ora”,
jTextField5.getText(), jPassordField1.getText());

Statement stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery
(“SELECT Last, First, Phone, relation

FROM phone ORDER BY Last, first “); // all rows retrieved
String s=””;
while (rset.next()) {

s+=(rset.getString(1)+”\t\t”+rset.getString(2)+
“\t”+rset.getString(3)+”\t”+rset.getString(4)+”\n”);

}
jTextArea1.setText(s); // rows displayed in JTextArea object
stmt.close();
conn.close();

}
/************** SEARCHES TABLE BASED ON LAST NAME **************/
void jButton5_actionPerformed(ActionEvent e) throws SQLException{

jTextArea1.setText(“”);
try {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
}
catch (ClassNotFoundException ex) {

System.out.println(“Could not load driver”);
}

ShahCh15v3.qxd 4/16/04 12:05 PM Page 356

Java Applet: Putting it all Together 357

Connection conn =
DriverManager.getConnection(“jdbc:odbc:shah_ora”, jTextField5.getText(),
jPasswordField1.getText());
Statement stmt = conn.createStatement();
String l = jTextField1.getText().trim().toUpperCase();
String query =

“SELECT Last, first, Phone, Relation “ +
“FROM phone WHERE Upper(Last)= ’”+ l + “’”;

ResultSet rset = stmt.executeQuery(query);
String s=””;
while (rset.next()) {

s+=(rset.getString(1)+”\t\t”+rset.getString(2)+
“\t”+rset.getString(3)+”\t”+rset.getString(4)+”\n”);

}
if (s.equals(“”))

jTextArea1.setText
(“Last name field is left blank\nOR\ndoes not exist in table”);

else
jTextArea1.setText(s);
stmt.close();
conn.close();

}
}
class AppletData_jButton1_actionAdapter implements java.awt.event.ActionListener

{
AppletData adaptee;
AppletData_jButton1_actionAdapter(AppletData adaptee) throws Exception{

this.adaptee = adaptee;
}
public void actionPerformed(ActionEvent e) {

try{
adaptee.jButton1_actionPerformed(e);

}
catch (Exception ex){

System.out.println(“Error”);
}

}
}
class AppletData_jButton2_actionAdapter implements java.awt.event.ActionListener

{
AppletData_jButton2_actionAdapter(AppletData adaptee) {

this.adaptee = adaptee;
}
public void actionPerformed(ActionEvent e) {

adaptee.jButton2_actionPerformed(e);
}

}

ShahCh15v3.qxd 4/16/04 12:05 PM Page 357

358 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

class AppletData_jButton3_actionAdapter implements java.awt.event.ActionListener
{

AppletData adaptee;

AppletData_jButton3_actionAdapter(AppletData adaptee) throws Exception {
this.adaptee = adaptee;

}
public void actionPerformed(ActionEvent e) {

try{
adaptee.jButton3_actionPerformed(e);

}
catch (Exception ex){

System.out.println(“Error”);
}

}
}

class AppletData_jButton5_actionAdapter implements java.awt.event.ActionListener
{

AppletData adaptee;
AppletData_jButton5_actionAdapter(AppletData adaptee) throws Exception{

this.adaptee = adaptee;
}
public void actionPerformed(ActionEvent e) {

try{
adaptee.jButton5_actionPerformed(e);

}
catch (Exception ex){
System.out.println(“Error”);

}
}

}

SQLj

An alternative to JDBC, SQLj is Oracle’s implementation of the ANSI SQL-1999
Part-0 “Embedded SQL in Java,” which specifies the integration of SQL statements
in Java programs. Oracle SQLj is more concise and easier to write than JDBC, and it
provides compile-time schema validation and syntax checking for easier debugging.

With SQLj, SQL statements can be embedded directly in a Java program. You
need to configure your Java environment by adding JARs; runtime12.jar, translator.jar,
and classes12.jar. If you remember, classes12.jar (from the CLASSES12.ZIP file) was
used during the set up of JDBC.You also need the SQLj executable, sqlj.exe. SQLj is
an attractive alternative, because it can perform syntax checking of SQL statements
at translation time. The SQLj translator translates a Java program (.sqlj) with SQL
statements into Java code (.java), which can be executed through the JDBC driver.
SQLj code is more compact than its JDBC counterpart.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 358

SQLj 359

Configuring Oracle SQLj in JBuilder8

To configure Oracle SQLj in JBuilder 8, do the following:

1. In JBuilder8, choose Tools configure Libraries Type “SQLj”
for ‘Name:’ field keep entry “User Home” for ‘Location’ field
select two files, runtime12.jar and translator.jar, from the Oracle directory
C:\ORACLE\ORA92\SQLJ\LIB.

2. In JBuilder8, choose Tools configure Libraries Type “Oracle
Driver” for ‘Name:’ field keep entry “User Home” for ‘Location’ field

select classes12.jar from the Oracle directory C:\ORACLE
\ORA92\JDBC\LIB.

3. In JBuilder8, choose Tools Enterprise Setup SQLj Oracle click on
the (ellipses) button for SQLj executable select sqlj.exe file from
C:\ORACLE\ORA92\BIN\.

4. In Jbuilder8, choose Tools Enterprise Setup SQLj Oracle Add SQLj
library from Step 1 to the ‘Library’ list box, and click on OK.

Creating an SQLj Project

To create an SQLj project, do the following:

1. In JBuilder8, File New Project name your project “sqljone” Finish.
2. Right click on the sqljone.jpx file in project pane, and select ‘Add

files/Packages’. Type “TestSQLj.sqlj” for file name, and select file type as
SQLJ (.sqlj) file. You will see a dialog box with message “The selected file
does not exist. Do you wish to create it?” Click on OK to create it.

3. In the project pane, double-click on the TestSQLj.sqlj file to open it up in
the editor.Type the code from Figure 15-10 in the editor.You can substitute
names for username, password, and so on.

4. File Save All.
5. Select Project Project Properties Paths Required Libraries Add

“SQLj” library.
6. Select Project Project Properties Paths Required Libraries Add

“Oracle Driver” library.
7. Select Project Project Properties Build General SQLj Traslator select

“Oracle” from the combo box.
8. In the project pane, right-click on TestSQLj.sqlj, and select Make. The

process will produce a Java (.java) file and invoke the Java compiler to
produce a bytecode (.class) file.

9. Right click on the TestSQLj.java file, and select Run Using Defaults. You
will see the output.

ƒƒƒƒƒ

ƒƒƒƒ

ƒƒƒƒ
ƒ

ƒƒƒ

ƒƒƒƒ

ƒÁ
ƒƒƒƒ

ƒ Add Á ƒ
ƒ

ƒ New Á ƒƒ

ƒ Add Á ƒƒ
ƒ New Á ƒƒ

ShahCh15v3.qxd 4/16/04 12:05 PM Page 359

360 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

The program in Fig. 15-10 illustrates statements involved in writing an SQLj
program:

• Import classes. The java.sql package is imported for JDBC classes,
sqlj.runtime and sqlj.runtime.ref packages for SQLj runtime classes, and the
oracle.sqlj.runtime package for Oracle class.

• Connect to the database. Connection to the Oracle database is achieved with
the Oracle.connect() method. The method takes four parameters; url, user-
name, password, and autocommit mode. The autocommit mode could be true
or false. If false is used, the programmer has to commit SQL statements. If you
are using any database other than Oracle, you would use DriverManager.-
registerDriver(), but this is not needed for Oracle database.

• Embed SQL statements. The SQL statements are embedded with
where #sql tells the SQLj translator that the SQL

statement follows.The statements may include host variables with a colon (:)
prefix (as seen in PL/SQL section), which are declared in the Java program.

#sql 5sql_statement6,

import oracle.sqlj.runtime.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.io.*;
import java.sql.*;
public class TestSQLj2 {

public static void main(String [] args) {
try {

Oracle.connect
(“jdbc:Oracle:thin:@localhost:1521:oracle”,

“nshah”, “india_usa”, true);
String dname = “”;
int num = 10;
#sql {SELECT DeptName into :dname

FROM dept WHERE DeptId = :num};
System.out.println(“Deptname is “ + dname);

}
catch (SQLException e) {

e.printStackTrace();
}
finally {
try { Oracle.close(); }
catch(SQLException e) { e.printStackTrace(); }
}

}
}

Figure 15-10 SQLj program.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 360

SQLj Iterators 361

For example, string variable dname is declared in Java and used as :dname in
an SQL statement as a host variable, and Java variable num is used as :num
as shown Figure 15-10.

HOST VARIABLES

A host variable is used with a colon (:) prefix followed by IN, OUT or INOUT de-
pending on if it is for input, output, or both, respectively. Remember them from
PL/SQL? The default is IN for host variables, except for the INTO clause of SELECT
statement. We can rewrite the SQL statement in Figure 15-10 as

#sql {SELECT deptName INTO :OUT dname FROM phone WHERE DeptId = :IN num};

where dname and num are declared in the Java program.
You need to choose data types carefully while using Java variables in SQL. Or-

acle’s CHAR and VARCHAR2 types correspond to string in Java. Oracle’s DATE
type corresponds to java.sql.Date class. Oracle’s NUMBER type corresponds to
Java’s int, long, float, and double. A CURSOR in Oracle is ResultSet in Java. Any
valid Java expression can be used as a host expression in an SQL statement.

SQLj ITERATORS

When an SQL query returns more than one row in a Java program, an SQLj iterator
is used. An iterator is similar to a JDBC result set, but columns are given data types
in the former. An iterator is based on cursor in the SQL query. SQLj constructs an
iterator class for iterator declaration. The instance variables and methods from the
iterator class are available in the program.There are two types iterator declarations:

1. Named Iterator: Data types and column names are specified.
2. Positional Iterator: Only data types are specified.

Named Iterator

The general syntax for declaring a named iterator is

#sql iterator iteratorName (type1 column1, typ2 column2, . . . , typeN columnN);

In Figure 15-11, a named iterator is used. The following statement declares a
named iterator DeptIter:

#sql iterator DeptIter(int i, String n, String l);

Iterator contains three columns with their data type. SQLj creates a class with the
same name, DeptIter. Then, a null reference named di to DeptIter class is declared,

ShahCh15v3.qxd 4/16/04 12:05 PM Page 361

362 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

which is populated with a SELECT query. It is important to use column aliases for
columns retrieved, and the column aliases must be same as the column names in the
iterator:

DeptIter di = null;
#sql di={SELECT deptid i,deptname n,location l FROM dept};

The next() method of the DeptIter class is used to retrieve one row from the
iterator. SQLj also creates get or accessor methods with the same name as the col-
umn names to get the values of columns, such as i(), n() and l():

while (di.next()) {
System.out.println(di.i()+”\t”+di.n()+”\t\t”+di.l());

}

Finally, the iterator is closed with the close() method after it has been processed:

di.close();

import oracle.sqlj.runtime.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.io.*;
import java.sql.*;
public class TestSQLj3 {

public static void main(String [] args) {
#sql iterator DeptIter(int i, String n, String l);
try {

Oracle.connect
(“jdbc:Oracle:thin:@localhost:1521:oracle”,

“nshah”, “india_usa”, true);
DeptIter di = null;
#sql di =

{SELECT deptid i, deptname n, location l FROM dept};
while (di.next()) {

System.out.println(di.i()+”\t”+di.n()+”\t\t”+di.l());
}
di.close();
}
catch (SQLException e) {

System.out.println(e.getMessage());
}
finally {

try { Oracle.close(); }
catch(SQLException e) { e.printStackTrace(); }

}
}

}

Figure 15-11 SQLj named iterator.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 362

SQLj Iterators 363

Positional Iterator

A positional iterator is similar to a named iterator, but it is declared with data types
that positionally match the data types of columns retrieved with the SELECT query.
The general syntax of declaration is

#sql iterator IteratorName (type1, type2, . . . , typeN);

For example, the positional iterator is declared only with data types in
Figure 15-12 as follows:

#sql iterator DeptIter(int, String, String);

import oracle.sqlj.runtime.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.io.*;
import java.sql.*;
public class TestSQLj4 {

public static void main(String [] args) {
#sql iterator DeptIter(int, String, String);
int i=0;
String n=null;
String loc=null;
try {

Oracle.connect
(“jdbc:Oracle:thin:@localhost:1521:oracle”,

“nshah”, “india_usa”, true);
DeptIter di = null;
#sql di = {SELECT deptid, deptname, location FROM dept};
#sql {fetch :di into :i, :n, :loc};
while (!di.endFetch()) {

System.out.println(i+”\t”+n+”\t\t”+loc);
#sql {fetch :di into :i, :n, :loc};

}
di.close();

}
catch (SQLException e) {

System.out.println(e.getMessage());
}
finally {

try { Oracle.close(); }
catch(SQLException e) { e.printStackTrace(); }

}
}

}

Figure 15-12 SQLj positional iterator.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 363

364 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

The iterator is instantiated and populated with an SQL query as given in the
following statements:

DeptIter di = null;
#sql di = {SELECT deptid, deptname, location FROM dept};

There is no need to use column aliases with an SQL query, because a fetch
statement is used to retrieve columns into host variables declared as Java variables
with appropriate data types:

int i=0;
String n=null;
String loc=null;
#sql {fetch :di into :i, :n, :loc};

The endFetch() method checks for row fetched, and while there is no end of
fetch, more rows are fetched in the loop with each iteration:

while (!di.endFetch()) {
System.out.println(i+”\t”+n+”\t\t”+loc);
#sql {fetch :di into :i, :n, :loc};

}

Finally, the iterator is closed when the processing is done:

di.close();

SQLj is basically used for static SQL statements, but it is possible to use dynamic
SQL with SQLj through JDBC. An SQLj program may contain SQLj as well as
JDBC code. JDBC’s result set and SQLj’s iterators can be assigned to each other.

PL/SQL FROM SQLj

SQLj can embed SQL statements with #sql. SQLj can also embed an entire anony-
mous block with #sql. SQLj can call PL/SQL stored procedures and functions as well.

The general syntax of anonymous block in SQLj is

#sql { anonymous block statements };

The general syntax of PL/SQL procedure call is

#sql { CALL procedurename [(parameterlist)] };

The general syntax of PL/SQL function call is

variablename = #sql { VALUES (functionname (parameterlist)) };

ShahCh15v3.qxd 4/16/04 12:05 PM Page 364

In a Nutshell . . . 365

In Figure 15-13, two calls are made to PL/SQL named blocks, one to proce-
dure FIND_TITLE in package COURSE_INFO and one to function FIND_PRE-
REQ in the same package. If a PL/SQL block already exists, there is no need to
reinvent the wheel in Java! The named blocks are passed IN, OUT, and INOUT pa-
rameters in the same way that PL/SQL uses them. The procedure is passed course
ID as an IN parameter and title as an OUT parameter. The function is passed
course ID as an IN parameter, and it returns the prerequisite of the course.

import oracle.sqlj.runtime.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.io.*;
import java.sql.*;
import javax.swing.*;
public class TestSQLj4 {

public static void main(String [] args) {
try {

Oracle.connect
(“jdbc:Oracle:thin:@localhost:1521:oracle”,

“nshah”, “india_usa”, true);
String cid=JOptionPane.showInputDialog(“Enter Course Id:”);
String title;
String preReq;
#sql {CALL course_info.find_title(:in cid, :out title)};
#sql preReq = {VALUES(course_info.find_prereq(:in cid))};
System.out.println(cid+”-”+title+” —> PreReq: “+preReq);

}
catch (SQLException e) {

System.out.println(e.getMessage());
}
finally {

try { Oracle.close(); }
catch(SQLException e) { e.printStackTrace(); }

}
}

}

Figure 15-13 SQLj calls to PL/SQL named blocks.

IN A NUTSHELL . . .

� Java is a portable programming language with a broad set of predefined classes
and methods that handle most fundamental requirements of programmer.

� JDBC is an API (Application Programming Interface) for database access
in Java.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 365

366 Chap. 15 Oracle with Java: A Tutorial on JDBC and SQLj

� There are five steps in creating a JDBC application: Import JDBC classes or
package with JDBC classes, load the JDBC drivers, establish the connection
with the database, execute SQL statements/interact with the database, and
close the connection.

� JDBC uses a variety of classes for interaction with the Oracle database: State-
ment, ResultSet, ResultSetMetaData, PreparedStatement, and Callable-
Statement.

� To make program work with sun.jdbc.odbc.JdbcOdbcDriver, you must have
Oracle driver in OraHome92 (Oracle Home).

� An Oracle-supplied JDBC driver is used with Oracle thin driver for con-
necting to the Oracle database with Java.

� SQLj is an alternative to JDBC.With SQLj, SQL statements can be embedded
directly in a Java program.

� SQLj translator translates a Java program (.sqlj) with SQL statements into
Java code (.java), which can be executed through the JDBC driver.

� An SQLj program includes importing of classes, connecting to the database,
and embedding of SQL statements.

� In an SQLj program, a host variable is used with a colon (:) prefix followed by
IN, OUT, or INOUT depending on if it is for input, output, or both, respectively.

� When an SQL query returns more than one row in Java program, an SQLj
iterator is used.An interator is similar to a JDBC result set, but columns are
given data types in an iterator.

� There are two types iterator declarations: named iterator, in which data
types and column names are specified; and positional iterator, in which only
data types are specified.

� SQLj can embed SQL statements with #sql. SQLj can also embed an entire
anonymous block with #sql. SQLj can call PL/SQL stored procedures and
functions as well.

EXERCISE QUESTIONS

True/False:
1. Java is a language for Web-based Internet programming.
2. To connect to the Oracle database with Java, you can only use the JDBC driver provided

by Sun Microsystems.
3. Java establishes a connection with the Oracle driver, then loads the JDBC driver.
4. When a SELECT-query is executed with executeQuery() method, data are retrieved

into a ResultSet object.
5. ResultSetMetaData class is used to get metadata information about a ResultSet object.
6. PreparedStatement class allows execution of SQL statements with parameters.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 366

Lab Activity 367

7. CallableStatement class allows a call to PL/SQL blocks.
8. SQL statements are embedded directly into the Java program with SQLj.
9. Host variables are used in an SQLj program as IN parameters only.

10. Two types of SQLj iterators are named and anonymous iterators.

Answer the Following Questions:
1. Compare the features of JDBC and SQLj.
2. State and briefly explain the steps in creating a JDBC application.
3. What is the difference in use of the JDBC drivers provided by Sun and Oracle?
4. Which Oracle-provided files are necessary for creating an SQLj project with any Java en-

vironment?
5. Describe the use of iterators in SQLj projects.

LAB ACTIVITY

1. Create a JDBC project with an Oracle data source to retrieve and display rows from the
COURSE table.

2. Create a JDBC project to add a new employee in the EMPLOYEE table. Pass parameters
to your SQL statement.

3. Create a JDBC project to call the procedure created in lab activity 1 of Chapter 14.
4. Create an SQLj project to retrieve student name and faculty name from the STUDENT

and FACULTY tables, respectively. Use host variables declared in a Java program, and
display the retrieved rows (iterator problem).

5. Create an SQLj project to call the function created in lab activity 2 of Chapter 14.

ShahCh15v3.qxd 4/16/04 12:05 PM Page 367

16

Oracle9i: Architecture

and Administration

IN THIS CHAPTER . . .

� The functions of a Database Administrator (DBA) are listed.
� Different aspects of Oracle’s architecture are explained.
� You will learn about Oracle database administration with Oracle Enterprise

Manager (OEM).
� Oracle security, users, roles, and system privileges are covered.
� Oracle Data Dictionary views and their types are listed.

Oracle is a very complex product, and its capabilities are increasing with every new
release of the software. The Database Administrator (DBA) is the most critical po-
sition in the daily operations of the database environment. The successful imple-
mentation of a database depends on the DBA.

DATABASE ADMINISTRATOR (DBA)

The DBA is responsible for installing the Oracle database, managing day-to-day
needs of the complex database, and running the system at peak performance. A
DBA performs software maintenance, resource management, data administration,

ShahCh16v3.qxd 4/16/04 12:06 PM Page 368

Oracle Architecture: An Overview 369

database tuning, troubleshooting, data security, and backup and recovery. Some of
the duties performed by the DBA are:

� Install and upgrade Oracle and its tools.
� Configure the Oracle instance.
� Create a database.
� Create, alter, and remove database users and roles.
� Grant and restrict access rights.
� Allocate and manage physical and logical storage structures.
� Develop security strategies.
� Develop backup and recovery procedures.
� Monitor system performance.
� Analyze database performance, and implement solutions to problems.
� Communicate with Oracle support service personnel.
� Troubleshoot locking problems.

In short, the DBA is the most trusted user in the database environment. The
DBA must possess a thorough knowledge of the operating system on which Oracle
is installed, hardware specifications needed for the server and the clients, memory
structures and Oracle processes, PL/SQL modules and their behavior in the system,
client–server architecture, and networking-related issues.

ORACLE ARCHITECTURE: AN OVERVIEW

Figure 16-1 presents an overview of Oracle architecture. Oracle architecture con-
tains three major areas:

1. System Global Area (SGA) or memory structure.
2. Background processes.
3. Physical storage structure.

The System Global Area (SGA) is a memory area used, for example, to store
information that is shared by database and user processes. The SGA consists of a
database buffer cache, a shared pool, a Java pool, and redo log buffers. In Oracle8i,
the Java pool was used only if Java was used, but it is required in Oracle9i. The data-
base buffer cache contains actual data from the database. The user transactions are
first stored in the buffer and then written to the disk. The shared pool contains the
executed SQL and PL/SQL statements for reuse of the information.The shared pool
keeps parsed statements based on a “least recently used” algorithm. The redo log
buffers store the redo entries for the online redo logs before writing them to the disk.

The background processes run simultaneously and independently of each
other.These processes work on databases, and there can be a number of such processes

ShahCh16v3.qxd 4/16/04 12:06 PM Page 369

Database
Buffer Cache

SGA

Redo Log Buffer Shared Pool

Server
Process

Database
Writer

(DBWR)

Redo Log Filel
Redo Log File2

System
Monitor
(SMON)

Log Writer
(LGWR)

Process
Monitor
(PMON)

Archiver
(ARCH)

Checkpoint
Process
(CKPT)

Offline
Storage

Control
Files

User
Process

Data
Segment

Rollback
Segment

Figure 16-1 Oracle Architecture.

370 Chap. 16 Oracle9i: Architecture and Administration

depending on the configuration of the Oracle initialization file (INIT.ORA). Some of
the background processes are dedicated server processes, database writer (DBWR),
system monitor (SMON), process monitor (PMON), log writer (LGWR), archiver
(ARCH), and checkpoint process (CKPT).

SMON process performs all housekeeping tasks. A system process is created
for each user process to handle its requests. It performs instance recovery, rolls for-
ward or back as needed for recovery, clears temporary segments that are not
needed, coelesces free spaces into a large area of free space, and “listens” to user
processes. The user writes to the database buffer cache, and DBWR takes data from
the buffer cache in SGA and writes to the database. DBWR is the only process that
can write to the database. All updates are performed in the buffer cache, and not on
the database files. PMON monitors all processes, checks for failed processes, and
terminates them properly. It also releases resources used by failed processes.
LGWR writes the SGA redo log buffer’s contents to the redo log files. Each instance
contains its own LGWR. The redo log buffer holds data images before and after
changes. Redo log files contain data as well as rollback information. LGWR writes
the redo log buffer’s contents to redo log files when the COMMIT command is issued,

ShahCh16v3.qxd 4/16/04 12:06 PM Page 370

Oracle Architecture: An Overview 371

the buffer is one-third full, or a 3-second timeout occurs. ARCH archives redo log
files to offline or online storage files. CKPT maintains checkpoints.

In Figure 16-2, Data Dictionary view V$BGPROCESS lists process address,
process name, and description.Another column named ERROR can also be displayed
to show error information.This statement was the first statement executed on a startup
of a new user session, and it returned 69 background processes.The processes are listed
in order of their startup, and their order is

PMON � DBWR � ARCH � LGWR � SMON

Figure 16-2 Oracle background processes.

SQL> SELECT PADDR, NAME, DESCRIPTION
2 FROM V$BGPROCESS;

PADDR NAME DESCRIPTION
-
681E46BC PMON process cleanup
00 DIAG diagnosibility process
00 FMON File Mapping Monitor Process
00 LMON global enqueue service monitor
00 LMD0 global enqueue service daemon 0
00 LMS0 global cache service process 0
00 LMS1 global cache service process 1
00 LMS2 global cache service process 2
00 LMS3 global cache service process 3
00 LMS4 global cache service process 4
00 LMS5 global cache service process 5
. . .

00 DMON DG Broker Monitor Process
00 RSM0 DR Resource Manager Process
00 NSV0 DR Server NetSlave Process 0

69 rows selected.

SQL>

The Oracle database consists of data files, at least two online redo log files, and
at least two control files. Data files contain data physically stored on the disk under
an operating system’s directory structure. The Oracle instance is the System Global
Area (SGA) memory and the background (shadow) processes. Each SGA is exclu-
sively used by an instance.When an instance starts, memory is allocated for an SGA,
and memory is deallocated when the instance shuts down. The Oracle Enterprise
Manager (OEM) starts the instance. The database is mounted on the instance and
is then opened. The users connect to the instance to access the database. The data-
base is mounted on a single instance in most cases, except for the Oracle Parallel
Server (OPS) environment, where a database can be mounted on many instances.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 371

372 Chap. 16 Oracle9i: Architecture and Administration

An Oracle instance is defined as ORACLE_SID or ORA_SID. In most cases, data-
base and instance have one-to-one relationship, but in Oracle9i, the database can
be mounted by one or more instances. The data are available only when the data-
base is open.

You also must select the database name and its instance name. The initialization
file has a name with INIT as a prefix to the instance name with extension ORA. For ex-
ample, if the instance name is ORCL, then the initialization file is INITORCL.ORA.
The database name is specified in the INIT.ORA file in the DB_NAME parameter.
The INIT.ORA file is in the DBS directory of the ORACLE_HOME.

The instance contains four types of files:

1. The parameter file INIT.ORA is read when an instance is opened.
2. The control files are read when the database is mounted.
3. The data files are read when the database is opened.
4. The changes to a database are logged in the redo log files.

Oracle uses many different logical database structures. A tablespace is the
basic storage allocation to a database. During Oracle’s installation, many table-
spaces with minimal capacity are created. Every database has a SYSTEM table-
space, and it also has other tablespaces, such as a TEMPORARY tablespace. The
tablespaces are operating system files with the .ORA extension. The DBA creates
tablespaces for databases according to the need, and a user-supplied name may con-
tain other extensions, such as .DAT or .DBF.

A user account is called a schema. Each object is stored under its owner’s
schema, which is referenced with a username. An Oracle database is created with
two schemas: SYS to store the Data Dictionary, and SYSTEM to store more Data
Dictionary information and tables for Oracle tools.

Each object is stored as one or more segments. A segment resides in only one
tablespace. A tablespace may contain many segments, however, and a segment may
contain many extents.An extent may contain many blocks.The block size is defined
in the DB_BLOCK_SIZE parameter. Whenever a user updates a table, the old
value is written to the rollback segment for read consistency. This also allows a user
to roll back updates without committing them. Oracle uses temporary segments
during table creation and joins.

Other database structures are tables to store user data and the Data Dictio-
nary and the index for fast search operation from the table.

The Oracle Relational DataBase Management System (RDBMS) is sold as a
base product in the Enterprise version. It also comes with other options, data car-
tridges, development tools, and Enterprise applications. The available licensing op-
tions are concurrent user license, named user license, and site license.

The version number normally has four numbers (e.g., 9.2.0.1). The first num-
ber is the major release number. The second number is the minor release number.
The third number is the code release number, and the fourth number is the patch
number for the code number.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 372

Oracle Architecture: An Overview 373

Performance can be measured in terms of time taken in the execution of a
complex query, number of users online concurrently, or time taken by a batch job.
The performance depends on the amount of memory, disk space, CPU, bus speed,
and network speed. All database packages are input/output (I/O) bound. The speed
of I/O affects the performance of such a system. The available resources must be
configured properly for optimum performance.

The database must be readily available to the users at all times. Safety meas-
ures are considered at the planning phase, configuration phase, and implementation
phase for the availability issue.The three configurations are replication, hot standby
database, and parallel server.The replication method uses separate databases by du-
plicating the entire implementation of the database on multiple computer systems,
where all updates are performed on all database implementations. The operations
can still continue if one of the databases crashes. The hot standby database method
uses only one database at a time. The other standby copy is in recover mode at all
times. The redo log files are used to recover the standby copy. If the primary copy
fails, the standby copy is recovered completely and is then brought up as the pri-
mary database. In an Oracle parallel server configuration, multiple computer sys-
tems are used with parallel processing capability to share a common database. In the
event of a computer system failure, the operations still continue as long as the
shared database is available.

Even with an implementation having redundant hardware and a redundant
database, you still need a good backup mechanism. Oracle has utilities to perform
the logical backup or physical backup at the data level. The logical backup utility
export, or EXP, copies all SQL statements to recreate all database objects and to in-
sert data as well. The export can be at the database, schema, table, or user level. The
backed-up data with EXP can be recovered on different platforms with different
operating systems and different versions of Oracle. The backup format with EXP is
proprietary to Oracle. The import, or IMP, utility copies the logical backup of data
back to the database. A cold backup is performed on a database when it is down, or
“cold.” When a database is running in archive log mode, Oracle saves the redo log
into archive log files. These files can be used to reconstruct transactions after the last
backup. The database can also be backed up while it is running, or “hot”; such a
backup is called a hot backup. The archive log files can be used with cold as well as
hot backups. The recovery manager (RMAN) manages cold backup, hot backup,
and the archive log files. The RMAN also enables you to perform incremental hot
backups, but it does not support export. Many third-party tools are available for
backup and recovery of a database.

The connections to Oracle databases are through services, which are processes
on an Oracle server or host. The service name is also known as a database alias,
which refers to an instance on a host.The relation between a service and an instance
is stored in a file called TNSNAMES.ORA, which is in Oracle home’s admin folder
in the Windows environment. If there is a change to TNSNAMES.ORA, the change
has to be Enterprise-wide. The changes to TNSNAMES.ORA are a problem during
the implementation. Oracle solves this problem with an Oracle Names server, which

ShahCh16v3.qxd 4/16/04 12:06 PM Page 373

374 Chap. 16 Oracle9i: Architecture and Administration

performs name resolution without using TNSNAMES.ORA. An Oracle Names
server can integrate with other name-resolution services, such as the Novell Net-
ware Directory service (NDS).

Oracle can connect to databases created under different vendors’ software,
ranging from Microsoft’s PC-database Access to Microsoft’s SQL-Server. Mi-
crosoft’s Open Database Connectivity (ODBC) driver running on a client enables
the client to connect to a server running The client need not run

because the ODBC driver emulates it. Oracle also utilizes gateway prod-
ucts to connect to non-Oracle database hosts. The gateway translates Oracle SQL
queries to a non-Oracle host’s native SQL and returns data to the Oracle server.An
Oracle gateway is available from the server with a database link, but it is not avail-
able from a client.

INSTALLATION

Oracle9i installer software is called Universal Installer. The installer looks different
based on the platform for which it is bought. The installer is available for character
mode,Windows mode, or Motif mode. In spite of the different look, the installer per-
forms the same task on all platforms using the following steps:

� Installs Oracle software components.
� Creates a starter database.
� Executes operating system functions to run Oracle.

You have to select components based on your installation needs and licenses
bought from Oracle Corporation. If an installer installs a component you don’t
need, you can remove it with the installer. If you select a component that is de-
pendent on another component, the installer automatically selects it the other
component. Many decisions are made before the installation process.You decide to
create or not to create a starter database; select a “home” location for the Oracle
software; plan the directory structure for the Oracle data files; define the database
block size; specify the number, size, and location of log files; and specify the maxi-
mum number of data files allowed. (Important for students: If you are installing
downloaded trial version of Oracle, use default values wherever possible to avoid
any future problems.)

When the installer creates a starter database, the SYSTEM and USERS table-
spaces are not allocated enough space, and the block size is very small. The block
size for a database cannot be changed. You should find out the block size used by
the operating system and the hardware, and then select a block size that is a multiple
of that value. The block size should not be larger than the amount of data your op-
erating system can transfer in a single operation. You should select a small block
size for a transaction-based system, which has queries involving single rows. For a
large system with bulk data retrievals and transfers, you should select a large block

SQL*Net,
SQL*Net.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 374

Connecting to The Oracle9i Database 375

size. The block size is specified in the INIT.ORA file with the DB_BLOCK_SIZE
parameter.

CONNECTING TO THE ORACLE9i DATABASE

Oracle9i provides user with different ways to connect to the database:

� (may go away in the future).
� Worksheet.
� (Web-based).
� Form.
� Reports.

Oracle Enterprise version has OEM bundled with it. OEM’s Console is a Win-
dows-based tool to administer Oracle resources. A DBA can connect to the Enter-
prise Manager with normal, SYSOPER, or SYSDBA privileges. The console allows
the DBA to create, start, or shut down databases; create, monitor, or lock users; cre-
ate and manage tablespaces; or execute SQL statements.You can run OEM Console
in a Windows environment by using

Start | Programs | Oracle – OraHome92 | Enterprise Manager Console

Then, launch it stand-alone (as seen in Figure 16-3).

iSQL*Plus
SQL*Plus
SQL*Plus

Figure 16-3 Oracle Enterprise manager console—launching stand-alone.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 375

376 Chap. 16 Oracle9i: Architecture and Administration

From or Worksheet, you can use the following command:

CONNECT username/password AS SYSDBA

Figure 16-4 is the login screen for connecting to OEM. The login screen pops
up when you select database from the OEM screen. Oracle creates two default users
with DBA privileges on installation, SYS and SYSTEM. SYS owns Oracle’s Data
Dictionary tables and views. SYSTEM owns tables required for Oracle’s develop-
ment tools. Before version 9i, Oracle provided default passwords for SYS and SYS-
TEM accounts. In version 9i, however, you have the ability to provide a password at
installation time. The DBA needs to connect as SYSDBA or SYSOPER to start and
shut down databases. In addition, the SYSDBA privilege gives full access to all data-
base objects.

SQL*PlusSQL*Plus

Figure 16-4 Oracle Enterprise manager login screen.

On successful login to the Console, the initial OEM screen is displayed. Here,
the DBA can manage Oracle modules, such as Instance, Schema, Security, Storage,
and so on (as shown in Figure 16-5).

ShahCh16v3.qxd 4/16/04 12:06 PM Page 376

Instance and Database 377

INSTANCE AND DATABASE

An instance is used to access the database. You can perform two operations on an
instance: STARTUP, and SHUTDOWN.When an instance starts, memory is allocat-
ed for SGA, and background processes are started. When an instance shuts down,
the database is closed, and memory is released. Database is another entity, and you
can perform three operations on it: OPEN, MOUNT, and CLOSED. A database
state is changed in one direction only, from MOUNT to OPEN, when an instance is
started. The operations can be performed with OEM’s Instance Manager,

or Worksheet. The general syntax for startup is

STARTUP [FORCE] [NOMOUNT|MOUNT|OPEN] [Oracle_sid] [PFILE=name] [RESTRICT]

where FORCE shuts down instance before starting it up, NOMOUNT starts an in-
stance without mounting a database, MOUNT mounts a database for DBA opera-
tions only, OPEN makes a database available to users, and RESTRICT restricts
access to users with SESSION-related privileges. PFILE contains parameters for
startup. If it is not specified, parameters are taken from INIT<Oracle_sid>.ORA file.

SQL*PlusSQL*Plus,

Figure 16-5 Oracle Enterprise Manager initial screen.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 377

378 Chap. 16 Oracle9i: Architecture and Administration

When an instance shuts down, the database is closed and dismounted. The
general syntax for shutdown is

SHUTDOWN [NORMAL|IMMEDIATE| TRANSACTIONAL|ABORT]

where the NORMAL option shuts down after all users are logged out and all trans-
actions are committed or rolled back, the IMMEDIATE option disconnects all
users and rolls back all transactions, the TRANSACTIONAL option finishes all
transactions and disallows new transactions, and the ABORT option is like a system
failure that requires recovery.

You can use Data Dictionary views v$session, v$database, and v$instance to
get information about user/processes, databases, and instances, respectively.

WORKING WITH ORACLE ENTERPRISE MANAGER (OEM)

Tablespace with Storage Manager

Tablespace is a logical unit of storage, which consists of physical files under an operat-
ing system. It may be made up of more than one file, and each file could be physically
located on a separate disk. A tablespace can be online or offline. It can be UNDO
(Oracle9i onward), PERMANENT, or TEMPORARY. A user with the DBA role or
with the CREATE TABLESPACE system privilege may create a tablespace.

Figure 16-6 illustrates use of Oracle Storage Manager in creating a new table-
space, CIS_DATA.ora, for students in a course and its actual location on the Oracle
server. The default tablespaces are allocated inadequate space, so the tablespace
created in this figure was allocated 100 MB. The SHOW SQL button shows the gen-
erated SQL code. Figure 16-7 shows successful creation of tablespace.

You can create a tablespace and specify the operating system file that makes
up the tablespace with a CREATE TABLESPACE statement at the command
prompt using the following general syntax:

CREATE [UNDO | TEMPORARY | PERMANENT] TABLESPACE tablespacename
DATAFILE ‘filespecs’ SIZE [size K | M]
AUTOEXTEND [ON | OFF NEXT n [K | M] MAXSIZE m [K | M] | UNLIMITED]
DEFAULT STORAGE (storage clause)
BLOCKSIZE 2K | 4K | 8K | 16K | 32K
EXTENT MANAGEMENT DICTIONARY | LOCAL
ONLINE | OFFLINE
PERMANENT | TEMPORARY;

A temporary tablespace is for keeping temporary sort data, which is created in
the same way but with type Temporary selected (radio button shown in Fig. 16-6).
The storage clause is similar to the one used with tables. If the storage clause is not
used with a table, then the storage clause from tablespace is used for it.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 378

Working with Oracle Enterprise Manager (OEM) 379

Figure 16-6 Creating a tablespace.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 379

380 Chap. 16 Oracle9i: Architecture and Administration

Figure 16-7 Tablespace created with information on all tablespaces.

Storage manager can be used for altering a tablespace or datafile also.You can
see information about all tablespaces by using USER_TABLESPACES data dic-
tionary view (see Fig. 16-8).

User and Role with Security Manager

The security of a database is a very important issue for the DBA. Database security
prevents unauthorized access and use of objects.

The DBA assigns a unique user ID to each authorized user.The general syntax
to create a user is

CREATE USER username IDENTIFIED BY passwordname
[DEFAULT TABLESPACE defaulttablespacename]
[TEMPORARY TABLESPACE temporarytablespacename]
[QUOTA storagespace ON defaulttablespacename]
[PROFILE profilename];

A DBA or anyone with the CREATE USER system privilege can create a
user. If the default tablespace is not specified, DEFAULT TABLESPACE is used.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 380

Working with Oracle Enterprise Manager (OEM) 381

You must define the quota in K or M to enable user to create tables and indexes. If
a profile is not specified, the DEFAULT profile is used.

You can create a user with OEM’s Security Manager tool, as shown in
Figure 16-9. In the OEM Console, expand the Security tree by clicking on You
will see Users, Roles, and Profiles folders under Security. Right-click on the Users
folder to get a pop-up menu. Then, you will select Create from the menu to
get the screen shown in Figure 16-9. User creation involves Name, Profile, Au-
thentication, Password, Confirm Password, Default Tablespace, and Temporary
Tablespace entries. You can lock a user’s account and expire a user’s password
from the same screen. If you click on the Show SQL button, you will see the SQL
code generated by your entries in user creation screen.

If a user account is locked, the user cannot log in. The locked user gets the fol-
lowing message from the Oracle server:

ERROR:
ORA-28000: the account is locked

Once a user is created, you can use that user as a template and create another
user based on the first user. You need to supply a new username and password only,

Á

+ .

Figure 16-8 Tablespaces storage information.

SQL> SELECT TABLESPACE_NAME, INITIAL_EXTENT, NEXT_EXTENT,
2 BLOCK_SIZE FROM USER_TABLESPACES;

TABLESPACE_NAME INITIAL_EXTENT NEXT_EXTENT BLOCK_SIZE
- -
SYSTEM 65536 8192
UNDOTBS1 65536 8192
TEMP 1048576 1048576 8192
CWMLITE 65536 8192
DRSYS 65536 8192
EXAMPLE 65536 8192
INDX 65536 8192
ODM 65536 8192
TOOLS 65536 8192
USERS 65536 8192
XDB 65536 8192

TABLESPACE_NAME INITIAL_EXTENT NEXT_EXTENT BLOCK_SIZE
- -
CIS_DATA 65536 8192
TEMP_DATA 1048576 8192

13 rows selected.

SQL>

ShahCh16v3.qxd 4/16/04 12:06 PM Page 381

382 Chap. 16 Oracle9i: Architecture and Administration

because the new user inherits the profile, tablespaces, and system privileges from the
template user. Figure 16-10 shows the process of creating a user based on another
user. Right-click on a username to be used as a template, and select Create Like

A user can be removed with the following statement:

DROP USER username [CASCADE];

Á

Figure 16-9 Creating a user.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 382

Working with Oracle Enterprise Manager (OEM) 383

where the CASCADE option removes all objects owned by the user and also re-
moves foreign key constraints.

The Oracle database and initialization files of various components create the
initial users at the time of installation. These users have different levels of privileges
and are granted different roles. Some of the initial users are:

� SYS—This user is granted the DBA role and owns the Data Dictionary. The
SYS user is granted all roles.

� SYSTEM—This user can manage the database and can also manage pack-
ages and tables for additional features within the database. The SYSTEM
user is also granted the DBA role.

� SCOTT—This user has only the CONNECT and RESOURCE roles. The
SCOTT user is a user with the basic end-user privileges.

The other initial users are RMAN, CTXSYS, ORDSYS, MDSYS, and DBSN-
MP. Because the SYS and SYSTEM users are granted the DBA roles, they inherit all
system privileges through the DBA role. The users CTXSYS and MDSYS are also
granted all system privileges, but not through the DBA role.

Roles are the same as groups in operating system terminology. Oracle uses
roles to grant system and object privileges to users. A DBA or anyone with the

Figure 16-10 Creating a user with Create Like Á

ShahCh16v3.qxd 4/16/04 12:06 PM Page 383

384 Chap. 16 Oracle9i: Architecture and Administration

CREATE ROLE privilege can create a role. The role is granted system and object
privileges. The role is then granted to a user by the DBA or anyone with the
GRANT ANY ROLE system privilege. There are approximately 30 Oracle roles. A
user is granted roles according to the need and level of use.When you grant a role to
a user, the user inherits all privileges from the role. A user needs at least the CON-
NECT and RESOURCE roles to create a table in the allocated tablespace. Most
end users and students are granted these two roles to work with their own objects.

Figure 16-11 shows the creation of a role called USER with two basic roles,
CONNECT and RESOURCE. You can grant the USER role to a user called STU-
DENT, and the user STUDENT will get the same CONNECT and RESOURCE
roles through role USER.

You will follow the same procedure to create a new role in Console. First,
right-click on the Roles folder, and then select Create from the pop-up menu. In
the General tab (as shown in Fig. 16-11), role and authentication are entered. In the
Role tab, various roles are granted to the newly created role. Once a role is created,
a “Role created successfully” message is displayed.

Some default roles in the database also allow the user to take certain actions.
When a new database is created with the CREATE DATABASE command, six de-
fault roles are automatically created. The DBA can run different scripts and create
more roles. The six default roles are:

1. CONNECT: A user with this role can connect to the database and create
any object other than a segment.

2. RESOURCE: This role is an extension to the CONNECT role. A user
with this role can create types, procedures, triggers, and snapshots.

3. DBA: This role has all system privileges except for UNLIMITED
TABLESPACE, because that is not granted to a role.

4. DELETE_CATALOG_ROLE: This role, which allows deletion of any
object owned by SYS, is granted to the DBA and the SYS schema explicitly.

5. EXECUTE_CATALOG_ROLE: This role, which allows execution of any
object owned by SYS, is granted to the DBA, SYS schema,
EXP_FULL_DATABASE role, and IMP_FULL_DATABASE role.

6. SELECT_CATALOG_ROLE: This role, which allows selection from any
object owned by SYS, is granted to the DBA, SYS schema,
EXP_FULL_DATABASE role, and IMP_FULL_DATABASE role.

You can use the Data Dictionary view DBA_ROLES to find roles and their
password. Oracle9i creates 30 roles on installation, whereas Oracle6 contained only
three roles—CONNECT, RESOURCE, and DBA!

Á

ShahCh16v3.qxd 4/16/04 12:06 PM Page 384

Working with Oracle Enterprise Manager (OEM) 385

Figure 16-11 Creating a role.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 385

386 Chap. 16 Oracle9i: Architecture and Administration

Figure 16-12 System privileges and actions.

System Privilege Type of Action

CREATE Create an object in a user’s own schema.
CREATE ANY Create an object in another user’s schema.
CREATE SESSION Connect to database.
DROP Drop an object in a user’s own schema.
DROP ANY Drop an object in another user’s schema.
ALTER SYSTEM Manipulate an instance.
ALTER DATABASE Manipulate database.
ALTER USER Change a user’s role or password.

Manipulate a tablespace.ALTER ƒ CREATE ƒ DROP ƒ MANAGE TABLESPACE

1. Privileges that affect the entire database: The DBA or user who is granted
the DBA role has such privileges. These privileges allow the DBA to alter
the database, create users, create roles, grant roles, manage tablespace, re-
move users, and so on.

2. Privileges that allow a user to create objects in the user’s own schema: These
privileges allow user to create tables, views, sequences, synonyms, proce-
dures, triggers, and so on. These privileges are granted to CONNECT and
RESOURCE roles.These roles are then granted to a user rather than grant-
ing individual privileges.

3. Privileges that allow a user to manipulate objects in any schema: These priv-
ileges allow you to manipulate objects in other users’ schemas. The DBA
and users with the DBA role are granted these privileges—for example,
CREATE ANY, DROP ANY, ALTER ANY, SELECT ANY, INSERT
ANY, EXECUTE ANY, and so on.

System privileges are granted carefully to users after intelligent planning. Only
DBAs and users with GRANT ANY PRIVILEGE system privilege can grant sys-
tem privileges to other users. The privileges are granted through a role or granted
individually with the following statement:

GRANT systemprivilege TO username [WITH ADMIN OPTION];

SYSTEM PRIVILEGES

System privileges allow a user to take certain actions within the database. Figure 16-12
shows a few system privileges needed for certain types of actions within the database.
As you know, Oracle9i has more than 100 defined system privileges.They can be cate-
gorized into three types based on their effect:

ShahCh16v3.qxd 4/16/04 12:06 PM Page 386

Oracle Data Dictionary 387

ORACLE DATA DICTIONARY

The Data Dictionary in Oracle consists of tables and related views. The Data Dictio-
nary gives the structure and inside view of the Oracle database, and it has grown with
each Oracle release. You can use SQL statements with Data Dictionary tables/views
just like you would with user tables/views.You can get information about various Or-
acle objects and users of the database.The Data Dictionary contains static Data Dic-
tionary views, which are owned by user SYS. The static Data Dictionary views are
based on tables that are updated with Oracle DDL statements only. It should not be
updated with Data Manipulation Language (DML) statements. The SYS tables,
views, and synonyms are created with the CATALOG.SQL script file. The procedur-
al objects are created with the CATAPROC.SQL file.These scripts files are provided
by Oracle and are copied into the ORACLE\ORA92\RDBMS\ADMIN directory
along with other script files.

Figure 16-13 DBA_SYS_PRIVS.

SQL> SELECT grantee, privilege, admin_option
2 FROM dba_sys_privs
3 WHERE grantee = ’DBA’;

GRANTEE PRIVILEGE ADM
-
DBA AUDIT ANY YES
DBA DROP USER YES
DBA RESUMABLE YES
DBA ALTER USER YES
DBA ANALYZE ANY YES
DBA BECOME USER YES
DBA CREATE ROLE YES
DBA CREATE RULE YES
DBA CREATE TYPE YES
DBA CREATE USER YES
DBA CREATE VIEW YES
. . .
139 rows selected.

SQL>

If WITH ADMIN OPTION is used, the user can pass on that privilege to an-
other user. Data Dictionary view DBA_SYS_PRIVS can show privileges granted to
a user/role (see Fig. 16-13).The query in Figure 16-13 returned 139 privileges granted
to the DBA role. You can also find out the same information from OEM Security
Manager.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 387

388 Chap. 16 Oracle9i: Architecture and Administration

The script files also create public synonyms for Data Dictionary views (e.g.,
synonym tabs for user_tables and seq for user_sequences). Before displaying infor-
mation from a view, DESCRIBE its structure first to avoid unnecessary information.

There are additional views known as dynamic performance Data Dictionary
views, or simply V$ views.The V$ views are based on internal memory structures, or
virtual tables, which begin with the X$ prefix. The V$ views and X$ tables have in-
formation about the instance. The information in the two Data Dictionary views is:

� Static Data Dictionary views—These views are for information on database
objects, database data files, and database users. The views begin with
USER_<objects_you_own>, ALL_<objects_you_have_access_to>, DBA_
<all_objects>—for example, DBA_CONSTRAINTS, DBA_CONS_
COLUMNS, DICTIONARY, DBA_INDEXES, USER_TABLES, ALL_
TRIGGERS, DBA_ROLES, DBA_PROFILES, DBA_SYS_PRIVS, DBA_
USERS, DBA_TABLESPACES, DBA_VIEWS, and so on.

� Dynamic performance Data Dictionary views—These views are for informa-
tion on instance objects, archive log files, and currently connected users—for
example, V$SESSION, V$PROCESS, V$TABLESPACE, V$SQL, V$SGA,
and so on.

IN A NUTSHELL . . .

� The DBA is responsible for installing the Oracle database, managing daily
operations, and running the database at peak performance.

� The Oracle database is the data stored on disk, and the Oracle instance is
the System Global Area (SGA) memory and background processes.

� An instance contains four types of files: the parameter file INST.ORA, con-
trol files, data files, and redo log files.

� A tablespace is the basic storage allocation to a database.
� A user account or username is called a schema.An Oracle database is creat-

ed with two schemas, SYS and SYSTEM.
� Oracle uses three configurations for availability to users: replication, hot

standby, and Oracle parallel server.
� Oracle provides good backup mechanisms in the forms of EXP/IMP, cold

backup, archive log files, and hot backup.
� The installation process installs Oracle components, creates a starter data-

base, and executes operating system functions to run Oracle.
� Oracle networking connects clients to a database and a database to another

database. Connections in Oracle are through services.The TNSNAMES.ORA
file contains relations between a service and an instance.

� Oracle can connect to other vendor-supplied databases by using ODBC
drivers and gateway products.

ShahCh16v3.qxd 4/16/04 12:06 PM Page 388

Exercise Questions 389

� Security is a very important issue for the DBA. The DBA creates users and
grants them privileges and roles.

� System privileges are categorized into those that affect the entire database,
those that allow users to create objects in their own schema, and those that
allow users to manipulate objects in any schema.

� Oracle creates default roles and initial users at the time of installation.
� Oracle provides a powerful set of tools, such as Work-

sheet, EXP/IMP, and Enterprise Manager.
� is an environment to interface with the database. It provides

users with editing, file-related, variable-related, formatting, and environ-
ment variable commands.

� Oracle’s Data Dictionary contains static and dynamic tables and views.

EXERCISE QUESTIONS

True/False:
1. The file TNSNAMES.ORA contains the names of default roles and initial users.
2. Three major areas of Oracle architecture are SGA, background processes, and physical

storage structures.
3. A user needs CONNECT and RESOURCE roles to create a table in his or her own

schema.
4. The replication method uses separate databases by duplicating the entire implementa-

tion of a database on multiple computer systems.
5. The hot standby database method uses only one database at a time, and the other stand-

by copy is in recover mode at all times.
6. An Oracle instance is the SGA and physical storage structures.
7. SYS user is granted the DBA role and owns the Data Dictionary.
8. An initial SCOTT user, created by Oracle, has all system privileges.
9. Worksheet is a Web-based environment to connect to the Oracle database.

10. An instance is first opened and then mounted.

Answer the Following Questions:
1. What is the difference among users, roles, and system privileges?
2. What are the duties of a DBA?
3. How does Oracle9i make sure that the database is available to users at all times?
4. Explain the backup mechanisms used by Oracle9i.
5. Discuss three types of Oracle system privileges.
6. Describe Oracle9i architecture.
7. Describe Oracle’s Data Dictionary.

SQL*Plus

SQL*Plus

SQL*Plus, SQL*Plus

ShahCh16v3.qxd 4/16/04 12:06 PM Page 389

Appendix A

Sample Databases:

Table Definitions

This textbook utilizes two sample databases thoughout its chapters. In this section, the table
structures are described.The primary key columns are underlined. It is always a good idea to
have primary key columns with the NUMBER data type, but other data types are also used
here for primary key columns (e.g., the primary key column in the TERM table.All columns,
their appropriate data types, and constraints are given. However, some of the columns,
though not used for any mathematical operations, are assigned the NUMBER data type for
simplicity.They can also be assigned one of the character data types, CHAR or VARCHAR2.
Students may modify the table structures as desired.

THE INDO–US (IU) COLLEGE STUDENT DATABASE

STUDENT

Column Name Data Type Constraints

StudentId CHAR(5) PRIMARY KEY

Last VARCHAR2(15) NOT NULL

First VARCHAR2(15) NOT NULL

Street VARCHAR2(25)

City VARCHAR2(15)

ShahAppAv3.qxd 4/16/04 12:24 PM Page 390

The Indo–US (IU) College Student Database 391

FACULTY

Column Name Data Type Constraints

FacultyId NUMBER(3) PRIMARY KEY

Name VARCHAR2(15) NOT NULL

RoomId NUMBER(2) FOREIGN KEY

Phone CHAR(3) UNIQUE

DeptId NUMBER(1) FOREIGN KEY

CRSSECTION

Column Name Data Type Constraints

CsId NUMBER(4) PRIMARY KEY

CourseId VARCHAR2(6) FOREIGN KEY, NOT NULL

Section CHAR(2) NOT NULL

TermId CHAR(4) FOREIGN KEY, NOT NULL

FacultyId NUMBER(3) FOREIGN KEY

Day VARCHAR2(2)

StartTime VARCHAR2(5)

EndTime VARCHAR2(5)

RoomId NUMBER(2) FOREIGN KEY

MaxCount NUMBER(2) CHECK

Column Name Data Type Constraints

State CHAR(2)

Zip CHAR(5)

StartTerm CHAR(4) FOREIGN KEY

BirthDate DATE

FacultyId NUMBER(3) FOREIGN KEY

MajorId NUMBER(3) FOREIGN KEY

Phone CHAR(10)

ShahAppAv3.qxd 4/16/04 12:24 PM Page 391

392 App. A Sample Databases: Table Definitions

REGISTRATION

Column Name Data Type Constraints

StudentId CHAR(5) COMPOSITE PRIMARY KEY, FOREIGN KEY

CsId NUMBER(4) COMPOSITE PRIMARY KEY, FOREIGN KEY

Midterm CHAR CHECK

Final CHAR CHECK

RegStatus CHAR CHECK

ROOM

Column Name Data Type Constraints

Room Type CHAR PRIMARY KEY

RoomDesc VARCHAR2(9)

LOCATION

Column Name Data Type Constraints

RoomId NUMBER(2) PRIMARY KEY

Building VARCHAR2(7) NOT NULL

RoomNo CHAR(3) NOT NULL, UNIQUE

Capacity NUMBER(2) CHECK

RoomType CHAR FOREIGN KEY

COURSE

Column Name Data Type Constraints

CourseId VARCHAR2(6) PRIMARY KEY

Title VARCHAR2(20) UNIQUE

Credits NUMBER(1) CHECK

PreReq VARCHAR2(6) FOREIGN KEY

ShahAppAv3.qxd 4/16/04 12:24 PM Page 392

The Namannavan (N2) Corporation Employee Database 393

TERM

Column Name Data Type Constraints

TermId CHAR(4) PRIMARY KEY

TermDesc VARCHAR2(11)

StartDate DATE

EndDate DATE

DEPARTMENT

Column Name Data Type Constraints

DeptId NUMBER(1) PRIMARY KEY

DeptName VARCHAR2(20)

FacultyId NUMBER(3) FOREIGN KEY

THE NAMANNAVAN (N2) CORPORATION EMPLOYEE DATABASE

MAJOR

Column Name Data Type Constraints

MajorId NUMBER(3) PRIMARY KEY

MajorDesc VARCHAR2(25)

EMPLOYEE

Column Name Data Type Constraints

EmployeeId NUMBER(3) PRIMARY KEY

Lname VARCHAR2(15) NOT NULL

Fname VARCHAR2(15) NOT NULL

PositionId NUMBER(1) FOREIGN KEY

Supervisor NUMBER(3) FOREIGN KEY

HireDate DATE

Salary NUMBER(6)

Commission NUMBER(5)

DeptId NUMBER(2) FOREIGN KEY

QualId NUMBER(1) FOREIGN KEY

ShahAppAv3.qxd 4/16/04 12:24 PM Page 393

394 App. A Sample Databases: Table Definitions

EMPLEVEL

Column Name Data Type Constraints

LevelNo NUMBER(1) PRIMARY KEY

LowSalary NUMBER(6)

HighSalary NUMBER(6)

POSITION

Column Name Data Type Constraints

PositionId NUMBER(1) PRIMARY KEY

PosDesc VARCHAR2(10)

DEPENDENT

Column Name Data Type Constraints

EmployeeId NUMBER(3) COMPOSITE PRIMARY KEY,

FOREIGN KEY

DependentId NUMBER(1) COMPOSITE PRIMARY KEY

DepDOB DATE

Relation VARCHAR2(8)

QUALIFICATION

Column Name Data Type Constraints

QualId NUMBER(1) PRIMARY KEY

QualDesc VARCHAR2(11)

Dept

Column Name Data Type Constraints

DeptId NUMBER(2) PRIMARY KEY

DeptName VARCHAR2(12)

Location VARCHAR2(15)

EmployeeId NUMBER(3) FOREIGN KEY

ShahAppAv3.qxd 4/16/04 12:24 PM Page 394

Appendix B

Quick Reference to SQL

and PL/SQL Syntax

SQL KEY WORDS

Figure B-1 SQL keywords.

ShahAppBv3.qxd 4/16/04 11:38 AM Page 395

396 App. B Quick Reference to SQL and PL/SQL Syntax

PL/SQL KEY WORDS

Figure B-2 PL/SQL keywords.

SQL AND PL/SQL SYNTAX

In the syntax for various SQL statements and PL/SQL blocks, the following conven-
tion is used:

• The key words are in uppercase letters.
• The user-defined names are in lowercase or mixed case.
• The optional items are enclosed in brackets ([]).
• The pipe symbol is used to denote OR.1 ƒ 2

ShahAppBv3.qxd 4/16/04 11:38 AM Page 396

SQL and PL/SQL Syntax 397

Creating a Table

CREATE TABLE [schema.] tablename
(column1 datatype [CONSTRAINT constraint_name] constraint_type . . .,
(column2 datatype [CONSTRAINT constraint_name] constraint_type . . .,
. . .

[CONSTRAINT constraint_name] constraint_type (column, . . .), . . .)
[TABLESPACE tablespacename]
[STORAGE (INITIAL n K|M NEXT n K|M)]
[PCTFREE p];

Column-Level Constraint

Column datatype [CONSTRAINT constraint_name] constraint_type,

Table-Level Constraint

[CONSTRAINT constraint_name] constraint_type (column, . . .),

Adding a Column to an Existing Table

ALTER TABLE tablename
ADD columnname datatype;

Modifying an Existing Column

ALTER TABLE tablename
MODIFY columnname newdatatype;

Adding a Constraint to a Table

ALTER TABLE tablename
ADD [CONSTRAINT constraint_name] constraint_type (columnname|
expression) [References tablename (columnname)]

Dropping a Column (Oracle8 Onward)

ALTER TABLE tablename DROP COLUMN columnname;

Setting a Column as Unused (Oracle8 Onward)

ALTER TABLE tablename SET UNUSED (columnname);

Dropping an Unused Column (Oracle8 Onward)

ALTER TABLE tablename DROP UNUSED COLUMNS;

ShahAppBv3.qxd 4/16/04 11:38 AM Page 397

398 App. B Quick Reference to SQL and PL/SQL Syntax

Renaming a Column (Oracle9i Onward)

ALTER TABLE tablename RENAME COLUMN oldname TO newname;

Renaming a Constraint (Oracle9i Onward)

ALTER TABLE tablename

RENAME CONSTRAINT oldname TO newname;

Dropping a Table

DROP TABLE tablename;

Renaming a Table

RENAME oldtablename TO newtablename;

Truncating a Table

TRUNCATE TABLE tablename [REUSE STORAGE];

Inserting a New Row into a Table

INSERT INTO tablename [(column1, column2, column3, . . .)]
VALUES (value1, value2, value3, . . .);

Customized Prompts

ACCEPT variablename PROMPT ‘prompt message’

Updating Rows

UPDATE tablename SET column1 = newvalue
[, column2 = newvalue, . . .]
[WHERE condition];

Deleting Rows

DELETE [FROM] tablename
[WHERE condition];

Dropping a Constraint

ALTER TABLE tablename
DROP PRIMARY KEY | UNIQUE (columnname) |
CONSTRAINT constraintname [CASCADE];

ShahAppBv3.qxd 4/16/04 11:38 AM Page 398

SQL and PL/SQL Syntax 399

Enabling|Disabling a Constraint

ALTER TABLE tablename
DISABLE CONSTRAINT constraintname | PRIMARY KEY [CASCADE];

ALTER TABLE tablename
ENABLE CONSTRAINT constraintname;

Retrieving Data from a Table

SELECT column, groupfunction (column)
FROM tablename [WHERE condition(s)]
[GROUP BY column|expression]
[HAVING groupcondition]
[ORDER BY column|expression [ASC|DESC]];

Define Command

DEFINE variable [= value]
SET DEFINE ON | character

Decode Function

DECODE (column | expr, value1, action1,
[value2, action2, . . .,]
[, default]);

Case Structure

CASE WHEN condition1 THEN
expression1

WHEN condition2 THEN
expression2

. . .
[ELSE expression]

END

Joining Tables: Equijoin or Outer Join

SELECT tablename1.columnname, tablename2.columnname
FROM tablename1, tablename2
WHERE tablename1.columnname [(+)] = tablename2.columnname [(+)];

Set Operation

SELECT-query1
UNION | UNION ALL | MINUS | INTERSECT
SELECT-query2;

ShahAppBv3.qxd 4/16/04 11:38 AM Page 399

400 App. B Quick Reference to SQL and PL/SQL Syntax

Select Subquery

SELECT columnlist
FROM tablename
WHERE columnname operator

(SELECT columnname
FROM tablename
WHERE condition);

Creating a Table Using a Subquery

CREATE TABLE tablename
AS
SELECT-query;

Inserting a Row Using a Subquery

INSERT INTO tablename [(column aliases)]
SELECT columnnames FROM tablename WHERE condition;

Inserting into Multiple Tables

INSERT ALL
[WHEN condition1 THEN] INTO table1

VALUES (columnlist)
[WHEN condition2 THEN] INTO table2

VALUES (columnlist)
. . .
SELECT columnlist
FROM tablename [WHERE condition(s)];

Updating Using a Subquery

UPDATE tablename
SET (columnnames) operator

(SELECT-FROM-WHERE SUBQUERY)
WHERE condition;

Deleting Using a Subquery

DELETE FROM tablename
WHERE columnname operator

(SELECT-FROM-WHERE SUBQUERY);

Top-N Query

SELECT ROWNUM, columnlist
FROM (SELECT-query with ORDER BY clause)
WHERE ROWNUM < | <= n;

ShahAppBv3.qxd 4/16/04 11:38 AM Page 400

SQL and PL/SQL Syntax 401

Merge Statement

MERGE INTO tablename tablealias
USING ((SELECT-query) tablealias
ON joincondition
WHEN MATCHED THEN

UPDATE-statement
WHEN UNMATCHED THEN

INSERT-statement;

Creating a View

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW viewname
[column aliases]

AS SELECT-subquery
[WITH CHECK OPTION [CONSTRAINT constraintname]]
[WITH READ ONLY];

Altering a View

ALTER VIEW viewname COMPILE;

Dropping a View

DROP VIEW viewname;

Creating a Sequence

CREATE SEQUENCE sequencename
[INCREMENT BY n]
[START WITH s]
[MAXVALUE x | NOMAXVALUE]
[MINVALUE m | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE c | NOCACHE]
[ORDER | NOORDER];

Modifying a Sequence

ALTER SEQUENCE sequencename
[INCREMENT BY n]
[MAXVALUE x | NOMAXVALUE]
[MINVALUE m | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE c | NOCHACHE]
[ORDER | NOORDER];

ShahAppBv3.qxd 4/16/04 11:38 AM Page 401

402 App. B Quick Reference to SQL and PL/SQL Syntax

Creating a Synonym

CREATE [PUBLIC] SYNONYM synonymname
FOR [schema.]objectname;

Dropping a Synonym

DROP VIEW synonymname;

Creating an Index

CREATE INDEX indexname
ON tablename (columnname1 [, columnname2] . . .);

Rebuilding an Index

ALTER INDEX indexname REBUILD;

Locking Rows for Update

SELECT columnnames
FROM tablenames
WHERE condition
FOR UPDATE OF columnnames
[NOWAIT];

Creating a User

CREATE USER username[PROFILE profilename]
IDENTIFIED BY password

[DEFAULT TABLESPACE tablespacename]
[TEMPORARY TABLESPACE tablespacename]
[PASSWORD EXPIRE] [ACCOUNT UNLOCK];

Changing a User’s Password

ALTER USER username
IDENTIFIED BY password;

Granting System Privileges

GRANT privilege1 [, privilege2 . . .]
TO username1 [, username2 . . .];

ShahAppBv3.qxd 4/16/04 11:38 AM Page 402

SQL and PL/SQL Syntax 403

Granting Object Privileges

GRANT objectprivileges [(columnnames)] | ALL
ON objectname
TO user|role|PUBLIC
[WITH GRANT OPTION];

Revoking Privileges

REVOKE privilege1 [, privilege2 . . .] | ALL
ON objectname
FROM users|role|PUBLIC
[CASCADE CONSTRAINTS];

PL/SQL Anonymous Block

DECLARE
declaration of constants, variables, cursors, and exceptions

BEGIN
PL/SQL and SQL statements

EXCEPTION
actions for error conditions

END;

PL/SQL Variable/Constant Declaration

DECLARE
identifiername [CONSTANT] datatype

[NOT NULL] [:= |DEFAULT expression];

Anchored Variable Declaration

variablename typeattribute%TYPE [value assignment];

Assignment Operation

variablename:=literal|variablename|Expression;

IF-THEN-END IF

IF condition(s) THEN
action statements

END IF

ShahAppBv3.qxd 4/16/04 11:38 AM Page 403

404 App. B Quick Reference to SQL and PL/SQL Syntax

If-Then-Else-End If

IF condition(s) THEN
action statements 1

ELSE
action statements 2

END IF

If-Then-Elsif-End If

IF condition(s)1 THEN
action statements 1

ELSIF condition(s)2 THEN
action statements 2

. . .
ELSIF condition(s)N THEN

action statement N
[ELSE

else action statements]
END IF

Case Statement

CASE [variablename]
WHEN value1 | condition1 THEN

action_statements1
WHEN value2 | condition2 THEN

action_statements2
. . .
[ELSE action_statements]

END CASE;

Basic Loop

LOOP
looping statement1;
looping statement2;
. . .
looping statementN;
EXIT [WHEN condition];

END LOOP;

While Loop

WHILE condition LOOP
looping statement 1;
looping statement 2;
. . .
looping statement n;

END LOOP;

ShahAppBv3.qxd 4/16/04 11:38 AM Page 404

SQL and PL/SQL Syntax 405

For Loop

FOR counter IN [REVERSE] lower..upper LOOP
looping statement 1
looping statement 2
. . .
looping statement n

END LOOP;

Bind/Host Variable

VARIABLE variablename datatype

Select-Into in PL/SQL

SELECT columnnames
INTO variablenames | recordname
FROM tablename
WHERE condition;

Explicit Cursor Declaration

CURSOR cursorname IS
SELECT statement;

Opening an Explicit Cursor

OPEN cursorname;

Fetching a Row from an Explicit Cursor

FETCH cursorname INTO variablelist | recordname;

Closing an Explicit Cursor

CLOSE cursorname;

Cursor For Loop

FOR recordname IN cursorname LOOP
loop statements;
. . .

END LOOP;

Cursor For Loop with a Subquery

FOR recordname IN (SELECT-query) LOOP
loop statements;
. . .

END LOOP;

ShahAppBv3.qxd 4/16/04 11:38 AM Page 405

406 App. B Quick Reference to SQL and PL/SQL Syntax

Where Current Of Clause

UPDATE tablename
SET clause

WHERE CURRENT OF cursorname;

Cursor with Select–For Update

CURSOR cursorname IS
SELECT columnnames
FROM tablename
[WHERE condition]
FOR UPDATE [OF columnnames] [NOWAIT];

Cursor with Parameters

CURSOR cursorname
[(parameter1 datatype, parameter2 datatype, . . .)]

IS
SELECT query;

Ref Cursor Type

TYPE cursortypename IS REF CURSOR [RETURN returntype];
cursorvarname cursortypename;

Opening a Cursor Variable

OPEN cursorname | cursorvarname FOR SELECT query;

Fetching from a Cursor Variable

FETCH cursorvarname INTO recordname | variablelist;

Exception Section

EXCEPTION
WHEN exceptionname1 [OR exceptionname2, . . .] THEN

executable statements
[WHEN exceptionname3 [OR exceptionname4, . . .] THEN

executable statements]
[WHEN OTHERS THEN

executable statements]

ShahAppBv3.qxd 4/16/04 11:38 AM Page 406

SQL and PL/SQL Syntax 407

Pragma Exception_Init Directive

exceptionname EXCEPTION;
PRAGMA EXCEPTION_INIT (exceptionname, errornumber);

Raise_Application_Error Procedure

RAISE_APPLICATION_ERROR(error_code, error_message [, TRUE|FALSE];

Creating a PL/SQL Record

TYPE recordtypename IS RECORD
(fieldname1 datatype | variable%TYPE | table.column%TYPE |

table%ROWTYPE [[NOT NULL] := | DEFAULT expression]
[, fieldname2 . . .
, fieldname3 . . .);

recordname recordtypename;

Declaring a PL/SQL Table

TYPE tabletypename IS TABLE OF
datatype | variablename%TYPE | tablename.columnname%TYPE
[NOT NULL] INDEX BY BINARY_INTEGER;

tablename tabletypename;

Declaring a PL/SQL Varray

DECLARE
TYPE varraytypename IS VARRAY (size) OF elementtype [NOT NULL];
varrayname varraytypename;

PL/SQL Procedure

CREATE [OR REPLACE] PROCEDURE procedurename
[(parameter1 [, parameter2 . . .])]

IS
[constant | variable declarations]

BEGIN
executable statements

[EXCEPTION
exception handling statements]

END [procedurename];

Calling a Procedure

procedurename [(parameter1, . . .)];

ShahAppBv3.qxd 4/16/04 11:38 AM Page 407

408 App. B Quick Reference to SQL and PL/SQL Syntax

Recompiling a Procedure

ALTER PROCEDURE procedurename COMPILE;

PL/SQL Function

CREATE [OR REPLACE] FUNCTION functionname
[(parameter1 [, parameter2 . . .])]
RETURN datatype

IS
[constant | variable declarations]

BEGIN
executable statements
RETURN returnvalue

[EXCEPTION
exception handling statements
RETURN returnvalue]

END [functionname];

PL/SQL Package Specification

CREATE [OR REPLACE] PACKAGE packagename
IS

[constant, variable, and type declarations]
[exception declarations]
[cursor specifications]
[function specifications]
[procedure specifications]

END [packagename];

PL/SQL Package Body

PACKAGE BODY packagename
IS

[variable and type declarations]
[cursor specifications and SELECT queries]
[header and body of functions]
[header and body of procedures]

[BEGIN
executable statements]

[EXCEPTION
exception handlers]

END [packagename];

PL/SQL Trigger

CREATE [OR REPLACE] TRIGGER triggername
INSTEAD OF|BEFORE|AFTER triggeringevent ON tablename|viewname

ShahAppBv3.qxd 4/16/04 11:38 AM Page 408

SQL and PL/SQL Syntax 409

[FOR EACH ROW]
[WHEN condition]
DECLARE

declaration statements
BEGIN

executable statements
EXCEPTION
exception handling statements
END;

Creating a Tablespace

CREATE[UNDO|TEMPORARY|PERMANENT] TABLESPACE tablespacename
DATAFILE ‘filespecs’ SIZE [size K | M]
AUTOEXTEND [ON | OFF NEXT n[K | M] MAXSIZE m[K | M] | UNLIMITED]
DEFAULT STORAGE (storage clause)
BLOCKSIZE 2K | 4K | 8K | 16K | 32K

EXTENT MANAGEMENT DICTIONARY | LOCAL
ONLINE | OFFLINE
PERMANENT | TEMPORARY;

Starting Up an Instance

STARTUP [FORCE] [NOMOUNT|MOUNT|OPEN]
[Oracle_sid] [PFILE=name] [RESTRICT]

Shutting Down an Instance

SHUTDOWN [NORMAL|IMMEDIATE|TRANSACTIONAL|ABORT]

Creating a User from the Command Line with Various
Clauses

CREATE USER username IDENTIFIED BY passwordname
[DEFAULT TABLESPACE defaulttablespacename]
[TEMPORARY TABLESPACE temporarytablespacename]
[QUOTA storagespace ON defaulttablespacename]
[PROFILE profilename];

Dropping a User

DROP USER username [CASCADE];

Logging into from the Command Line

SQLPLUS [username[|password]] [@hostname] [@script] [parameter list]

SQL*PLUS

ShahAppBv3.qxd 4/16/04 11:38 AM Page 409

Appendix C

Reference to SQL*Plus

Commands

Allowable command abbreviations are underlined.

ARRAYSIZE. The ARRAYSIZE command sets the number of rows fetched
from the database. The valid values are 1 to 5000. The general syntax is

SET ARRAYSIZE n

AUTOCOMMIT. The AUTOCOMMIT command sets the automatic com-
mit of a DML statement to On or OFF. The general syntax is

SET AUTOCOMMIT ON | OFF | IMMEDIATE

BREAK. The BREAK command specifies action based on a change of a
value of a column or an expression, or when a row is returned. The general syntax is

BREAK [ON column | expression | ROW | REPORT [action list]] . . .

The actions are SKIP n lines, SKIP PAGE, NODUPLICATES, or DUPLICATES.

ShahAppCv3.qxd 4/16/04 11:39 AM Page 410

App. C Reference to SQL*Plus Commands 411

BTITLE. The BTITLE command specifies the format of the title at the bot-
tom of each page. The general syntax is

BTITLE [ON | OFF] [printspec [text|variable] . . .]

where turns the title on or off. The printspecs are COL n, SKIP n, LEFT,
CENTER, RIGHT, and BOLD. The text is a character string to be printed, and the
variable is a user-defined or system variable.

CLEAR BUFFER. The CLEAR BUFFER command clears an entire SQL
statement from the buffer. The general syntax is

CLEAR BUFFER

CLEAR COLUMNS. The CLEAR COLUMNS command clears all column
formatting set during the current session. The general syntax is

CLEAR COLUMNS

CLEAR SCREEN. The CLEAR SCREEN command clears the entire screen.
The general syntax is

CLEAR SCREEN

COLSEP. The COLSEP command sets the text printed between columns re-
trieved by a SELECT statement. The default text is a single space. The general syn-
tax is

SET COLSEP text

COLUMN. The COLUMN command is used to display, suppress, reset, or
set column attributes as well as to set column headings. The general syntax/use is

COLUMN (shows display attributes for all columns)
COLUMN columnname (shows display attributes for one column)
COLUMN columnname CLEAR (resets display attributes of column)
COLUMN columnname FORMAT formattype (sets display attribute of column)
COLUMN columnname HEADING columnheading (sets column heading)

COMPUTE. The COMPUTE command performs calculations using stan-
dard mathematical functions and displays the summary lines. The general syntax is

COMPUTE [function . . . OF column|alias|expression . . .
ON column|alias|expression|REPORT|ROW]

ON ƒ OFF

ShahAppCv3.qxd 4/16/04 11:39 AM Page 411

412 App. C Reference to SQL*Plus Commands

where the functions are SUM, AVG, COUNT, MAXIMUM, MINIMUM,
NUMBER, STD, and VARIANCE. The ON clause must match the BREAK
statement.

CONNECT. The CONNECT command connects a user to the database. The
general syntax is

CONNECT username [|password [@hostname]]

COPY. The COPY command copies a result from table to table or allows
you to append or to create rows or to create new tables. The general syntax is

COPY FROM <DB> TO <DB> <OPT> <TABLE> { (<COLS>) } USING <SEL>

where

<db> = database string (e.g., scott/tiger@d:nshah-monroe)
<opt> = key word APPEND, CREATE, INSERT or REPLACE
<table> = name of the target table
<cols> = a list of target column aliases separated by commas
<sel> = any valid SELECT statement

DEFINE. The DEFINE command defines a variable and stores it with CHAR
data type. If a variable name is not supplied, it shows all previously defined variables.
The general syntax is

DEFINE[variablename = literal]

To turn use of a substitution character on or off, use

SET DEFINE ON | OFF

DESCRIBE. The DESCRIBE command describes the structure of a table or
view with column names, data types, and lengths. The general syntax is

DESCRIBE table_or_viewname

DISCONNECT. The DISCONNECT command commits the current transac-
tion and disconnects a user from the database, but it does not exit from
The general syntax is

DISCONNECT

SQL * Plus.

ShahAppCv3.qxd 4/16/04 11:39 AM Page 412

App. C Reference to SQL*Plus Commands 413

ECHO. The ECHO command controls the display of a command as it is exe-
cuted. ON lists the display; OFF suppresses the display. The general syntax is

SET ECHO ON | OFF

EXECUTE. The EXECUTE command executes a PL/SQL block/statement.
The general syntax is

EXECUTE statement | blockname

EXIT. The EXIT command commits the current DML transaction, disconnects
the user from the database, and closes the session.The general syntax is

EXIT

FEEDBACK. The FEEDBACK command displays the number of rows re-
turned by a query when the query returns at least n rows. It can also suppress the
display with the OFF switch. The default value for n is 6. The general syntax is

SET FEEDBACK n | OFF | ON

HELP. The HELP command starts the help function and displays
help on a specified topic; otherwise, it displays a list of topics. The general syntax is

HELP [topic]

HOST. The HOST command executes an operating system command from
If the command is not specified, the system prompt is displayed.You can

return back to by typing EXIT. The general syntax is

HOST [command]

LINESIZE. The LINESIZE command is used to set the total number of
characters displayed by per line before wrapping. The default line size is
80. The general syntax is

SET LINESIZE n

NUMWIDTH. The NUMWIDTH command sets the width for displaying
numbers. The default is nine. The general syntax is

SET NUMWIDTH n

PAGESIZE. The PAGESIZE command sets the number of lines per page.
The default is 24. You can change it to zero to suppress all titles, headings, and page

SQL * Plus

SQL * Plus
SQL * Plus.

SQL * Plus

SQL * Plus

ShahAppCv3.qxd 4/16/04 11:39 AM Page 413

414 App. C Reference to SQL*Plus Commands

breaks. The general syntax is

SET PAGESIZE n

PAUSE. The PAUSE command displays a blank line followed by a line with
specified text, then waits for the user to press the Enter key. The general syntax is

SET PAUSE OFF | ON | text

REMARK. The characters followed by the REMARK keyword on the same
line are treated as a comment that is ignored by The general syntax is

REMARK [text]

SET. The SET command shows and sets system and environment variables.
The general syntax is

SET variablename option | value

SHOW. The SHOW command shows the values of all system variables or
the current user’s name. The general syntax is

SHOW ALL | USER

SHOWMODE. The SHOWMODE command controls the display of old and
new settings when a variable setting is changed with SET. The general syntax is

SET SHOWMODE ON | OFF

SHUTDOWN. The SHUTDOWN command shuts down the Oracle data-
base instance. The general syntax is

SHUTDOWN

SPOOL. The SPOOL command with a filename starts the spooling of state-
ments and results into that file.The default file extension is lst.The OFF switch stops
writing to the file and closes it. The general syntax is

SPOOL filename[.ext] | OFF | OUT

SQL * Plus.

ShahAppCv3.qxd 4/16/04 11:39 AM Page 414

App. C Reference to SQL*Plus Commands 415

SQLCASE. The SQLCASE command converts the case of SQL state-
ments, PL/SQL statements, and text, including text in quotation marks. The gener-
al syntax is

SET SQLCASE UPPER | LOWER | MIXED

SQLPROMPT. The SQLPROMPT command can be used to set the
prompt.The default prompt is The general syntax is

SET SQLPROMPT text

TIME. The TIME command, when set to ON, shows current time before the
prompt. The general syntax is

SET TIME ON | OFF

TIMING. The TIMING command, when turned ON, shows timing statistics.
The general syntax is

SET TIMING ON | OFF

TTITLE. The TTITLE command specifies the format of the title, which is dis-
played at the top of each page. The general syntax is

TTITLE [ON|OFF] [printspec [text|variable] . . .]

UNDEFINE. The UNDEFINE command deletes a variable defined with
DEFINE or & or &&. The general syntax is

UNDEFINE variablename

VERIFY. The VERIFY command, when turned ON, shows an SQL state-
ment before and after replaces substitution variables with values. The
general syntax is

SET VERIFY ON | OFF

WRAP. The WRAP command controls the truncation of a row if it is longer
than the line width. The general syntax is

SET WRAP ON | OFF

SQL * Plus

SQL7

SQL 7 .
SQL * Plus

ShahAppCv3.qxd 4/16/04 11:39 AM Page 415

416 App. C Reference to SQL*Plus Commands

Command Description

APPEND text Adds text to the end of the current line.
CHANGE / old / new Changes old text to new text in the current line.
CHANGE / text / Deletes text from the current line.
CLEAR BUFFER Deletes all lines from the SQL buffer.
DEL Deletes the current line.
DEL n Deletes line number n.
DEL m n Deletes lines m through n.
INPUT Inserts an indefinite number of lines.
INPUT text Inserts a line of text.
LIST Lists all lines from the SQL buffer.
LIST n Lists line number n.
LIST m n Lists lines from m through n.
RUN Displays and runs an SQL statement from buffer.
N Makes line N current.
n text Replaces line n with text.
0 text Inserts a line before line 1.
CLEAR SCREEN Clears the screen.

Command Description

GET filename [.ext] Writes a previously saved file to the buffer. The default exten-
sion is sql. Writes SQL statements, not commands.

START filename [.ext] Runs a previously saved command from the file.
@filename Same as START (default extension must be .sql).
EDIT Invokes the default editor (e.g., Notepad), and saves the buffer

contents in a file called afiedt.buf.
EDIT [filename [.ext]] Invokes the editor with the command from a saved file.
SAVE filename [.ext] REPLACE Saves the current buffer contents to a file with the option to
APPEND replace or append.
SPOOL [filename [.ext] OFF OUT] Stores query results in a file. OFF closes the file, and OUT

sends file to the system printer.
EXIT Leaves the environment.SQL * Plus

ƒƒ

ƒ

SQL * Plus

SQL*PLUS FILE-RELATED COMMANDS

SQL*PLUS EDITING COMMANDS

Note: The filename in the file-related commands also requires a file path.

ShahAppCv3.qxd 4/16/04 11:39 AM Page 416

Appendix D

Object Orientation

AN OBJECT

An object in Oracle9i is a reusable component that represents real-word things. An
object is defined with a user-defined data type called an object type. Object types
are used as data types to define columns (known as object columns) in a table. Ob-
ject types are also used in place of a list of columns for an object table. An object
type can be used as an element in another object type as well.

An object contains a name, attribute(s), and methods. An object contains data
and information about what can be done with the data. An object may also contain
another object. The methods are procedures and functions written in an Oracle9i-
supported languages. Each method has a name as well as the name of the object that
contains that method. The method can be passed data through parameters from a
calling program.

Oracle9i is a relational database as well as an object-oriented database. It pro-
vides several ways to connect relational tables and objects:

• Object view—An object view is like a relational view. It does not contain
any data, but it is based on underlying tables. It allows users to view a rela-
tional table with an object orientation. You can modify data in the underly-
ing table with SQL statements, with object methods, or by using an object
view.

ShahAppDv3.qxd 4/16/04 11:40 AM Page 417

418 App. D Object Orientation

Name Item Type Attribute Name Data Type
NAME_TYPE Object type LAST_NAME VARCHAR2

FIRST_NAME VARCHAR2
FULLNAME_TYPE Object type NAME_REF REF to NAME_TYPE

MID_INITIAL VARCHAR2
NAME_TABLE Object table Row of FULLNAME_TYPE
STUDENT_TABLE Hybrid table STUDENT_ID NUMBER

FULL_NAME FULLNAME_TYPE
PHONE_NUM VARCHAR2

Figure D-1 Object types, REF column, object column, and hybrid table.

• Object table—An object table is a table that is described by object type, not
by attribute names. The elements in an object type define the data for the
object table. The object table can also contain object methods as part of a
table’s definition. These methods are used to perform data manipulation on
the object table. You can define a primary key for an object table and create
an index for it as well.

• Relational table with object column—A relational table may contain one
or more columns with the object type as their data type. Such a table is also
known as a hybrid table, because it contains columns with scalar data types
as well as object columns.

An object reference (key word REF) is a special data type in a table that fa-
cilitates a foreign key in the table. It establishes a relationship between two ob-
jects—for example, an object table called SOFTWARE_COMPANY_OBJ with a
primary key and a second object table, SOFTWARE_OBJ, that has a foreign key
column that connects software to the company that makes it. This foreign key
column is defined with the data type REF and references the object named
SOFTWARE_COMPANY_OBJ.

Let us take examples of object types, object tables, REF columns, and tables
with object type and look at SQL statements on these objects (see Fig. D-1).

SQL QUERIES FOR OBJECTS

Retrieving Data from an Object Table

In Figure D-1, the object table NAME_TABLE contains rows with the object type
FULLNAME_TYPE, which in turn has two attributes of type REF (NAME_REF)
and VARCHAR2 (MID_INITIAL).The REF to NAME_TYPE in turn contains two
attributes, LAST_NAME and FIRST_NAME, of type VARCHAR2.You can write a
standard SQL query to display the contents of the object table NAME_TABLE. For
example,

SELECT * FROM NAME_TABLE;

ShahAppDv3.qxd 4/16/04 11:40 AM Page 418

SQL Queries for Objects 419

The retrieved rows are displayed with column headings as follows:

LAST_NAME FIRST_NAME MID_INITIAL
----------------- ------------------ ------------------

You can use WHERE, ORDER BY, and GROUP BY clauses with the SELECT
statement, just as in standard relational SQL.

Now, let us display the last name, first name, and phone number of students
from STUDENT_TABLE. The attributes belonging to the object type are refer-
enced using dot notation:

tablealias.objecttype.attribute

For example,

SELECT S.FULL_NAME.LAST_NAME, S.FULL_NAME.FIRST_NAME,
PHONE_NUM FROM STUDENT_TABLE S;

When you use a column related to an object, you must use a table alias. In the
example above, STUDENT_TABLE has the alias S. If you do not use a table alias,
you get the following error message:

ORA-00904: invalid column name

Inserting a Row into an Object Table

The value for an object is inserted by entering the name of the object and then en-
closing all values for the object’s attributes in parentheses. For example,

INSERT INTO STUDENT_TABLE VALUES
(543, FULL_NAME(‘Spencer’, ‘Karen’, ‘A’), ‘732-555-6789’);

where FULL_NAME(‘Spencer’, ‘Karen’, ‘A’) contains values for three attributes
in the object FULL_NAME, which are LAST_NAME, FIRST_NAME, and
MID_INITIAL.

Updating an Object

Suppose you want to change a student’s last name. Use the UPDATE statement
with an alias for the table name, and qualify the attribute with the table name and
the object name. For example,

UPDATE STUDENT_TABLE S
SET S.FULL_NAME.LAST_NAME = ‘Martinez’
WHERE STUDENT_ID = 543;

Deleting Rows from an Object Table

DELETE FROM NAME_TABLE N
WHERE LAST_NAME = ‘Smith’;

ShahAppDv3.qxd 4/16/04 11:40 AM Page 419

Appendix E

What’s New in Oracle9i

SQL and PL/SQL?

This appendix describes new features of SQL and PL/SQL in Oracle9i (release 1).

NEW FEATURES IN SQL

1. New or modified built-in data types:

CHAR—can take CHAR or BYTE parameter.
VARCHAR2—can take CHAR or BYTE parameter.
TIMESTAMP—for additional datetime functionality.
INTERVAL YEAR TO MONTH—for additional datetime functionality.
INTERVAL DAY TO SECOND—for additional datetime functionality.

2. New or enhanced expressions:

CASE expressions—enhanced with Searched Case expression.
CURSOR expressions—enhanced to pass as REF CURSOR arguments
to function.
DATETIME expressions—new.
INTERVAL expressions—new.
Scalar subquery expressions—new.

ShahAppEv3.qxd 4/16/04 12:39 PM Page 420

New Features in SQL 421

ASCIISTR BIN_TO_NUM COALESCE
COMPOSE CURRENT_DATE CURRENT_TIMESTAMP
DBTIMEZONE DECOMPOSE EXISTSNODE
EXTRACT(datetime) EXTRACT (XML) FIRST
FROM_TZ GROUP_ID GROUPING_ID
GROUPING_ID LAST LOCAL_TIMESTAMP
NULLIF ROWTONHEX ROWIDTONCHAR
SESSIONTIMEZONE SYS_CONNECT_BY_PATH SYSTIMESTAMP
TO_CHAR(character) TO_CLOB TO_DSINTERVAL
TO_NCHAR(character) TO_NCHAR(datetime) TO_NCHAR(number)
TO_NCLOB TO_TIMESTAMP TO_TIMESTAMP_TZ
TO_YMINTERVAL TREAT TZ_OFFSET
UNISTR WIDTH_BUCKET

4. Enhanced functions:

INSTR.
LENGTH.
SUBSTR.

5. New system and object privileges:

EXEMPT ACCESS POLICY.
RESUMABLE.
SELECT ANY DICTIONARY.
UNDER ANY TYPE.
UNDER ANY NEW.
UNDER(object privilege).

6. New SQL statements:

CREATE PFILE.
CREATE SPFILE.
MERGE.

7. SQL statements with new syntax:

ALTER DATABASE—new syntax to end hot backup while database is
mounted; also for standby databases.
ALTER INDEX—to get statistics on index usage.
ALTER OUTLINE—for modifications to public and private outlines.

3. New built-in functions:

ShahAppEv3.qxd 4/16/04 12:39 PM Page 421

422 App. E What’s New in Oracle9i SQL and PL/SQL?

ALTER ROLE—to identify role using application-specified package.
ALTER SESSION—to specify if statements issued during a session can
be suspended.
ALTER SYSTEM—extended SET clause.
ALTER TABLE—allows partitioning by specified values.
ALTER TYPE—to change attribute or method definition of an object
type.
ALTER VIEW—to add constraints to views.
ANALYZE—new ONLINE and OFFLINE clauses, and selection of stan-
dard or user-defined (or both) statistics.
CONSTRAINT_CLAUSE—for index handling when dropping or dis-
abling constraints.
CREATE CONTEXT—to initialize the context from the LDAP directo-
ry or an OCI interface and to make context accessible throughout an
instance.
CREATE CONTROLFILE—for creation of Oracle-managed files.
CREATE DATABASE—to create default temporary tablespaces and to
undo tablespaces.
CREATE FUNCTION—to create pipelined and parallel table functions
and user-defined aggregate functions.
CREATE OUTLINE—for creation of private and public outlines.
CREATE ROLE—to identify a role using an application-specified package.
CREATE TABLE—allows creation of external tables, creation of Oracle-
managed files, and partitioning by a list of values.
CREATE TABLESPACE—for segment space management, creation of
Oracle-managed files, and creation of undo tablespaces.
CREATE TEMPORARY TABLESPACE—for creation of Oracle-
managed files.
CREATE TYPE—allows creation of subtypes.
CREATE VIEW—lets you create subviews of object views and define
constraints on views.
DROP TABLESPACE—lets you drop operating system files when con-
tents are dropped from a tablespace.
FILESPEC—for creation of Oracle-managed files.
INSERT—lets you insert default column values.
SELECT—lets you specify multiple grouping in GROUP BY clause,
assign names to subquery blocks, and support ANSI-compliant join
syntax.
SET TRANSACTION—to specify a name for a transaction.
UPDATE—to update default column values.

ShahAppEv3.qxd 4/16/04 12:39 PM Page 422

New Features in PL/SQL 423

NEW FEATURES IN PL/SQL

1. Integration of SQL and PL/SQL:

PL/SQL supports the complete range of syntax for SQL statements.
No error messages for valid SQL syntax as in previous versions.
Compile time error-checking.

2. CASE expressions:

New CASE statements as alternatives for IF statements.

3. New date/time types:

TIMESTAMP data type that records time in fractional seconds.
TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE for adjusting account for time zone differences (with day-
light savings).
INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH
for representing differences between two date and time values.

4. Type evolution:

Attributes and methods can be dropped from an object type without
recreating the type and corresponding data.

5. Native compilation of PL/SQL code:

Improved performance by compiling Oracle-supplied and user-created
stored procedures into native executables with C-language development
tools.

6. Table functions and cursor expressions:

You can query a set of returned rows like a table.
Result sets can be passed from one function to another.

7. Multilevel collections:

Nesting of collection types—for example, VARRAY of VARRAYS and
PL/SQL table of PL/SQL table.

8. LOB data types:

You can operate on LOB types like other similar types.
Character functions for CLOB and NCLOB.
Treat BLOB as RAWS.
Conversion from LOB to other types like LONG made simple.

ShahAppEv3.qxd 4/16/04 12:39 PM Page 423

424 App. E What’s New in Oracle9i SQL and PL/SQL?

9. MERGE statement:

A statement that combines INSERT and UPDATE into a single operation.

10. Bulk operations:

You can perform bulk SQL operations using native dynamic SQL—for
example, EXECUTE IMMEDIATE statement.
Perform bulk INSERT and UPDATE operations and, in case of errors on
some rows, continue and examine errors after the operation is complete.

ShahAppEv3.qxd 4/16/04 12:39 PM Page 424

Appendix F

Additional References

In this book, an attempt is made to provide an in-depth understanding of relational
database concepts, Oracle’s nonprocedural language SQL, and the procedural lan-
guage PL/SQL. Both language features apply to Oracle8, Oracle8i, and Oracle9i, al-
though Oracle9i has some added features. The author has examined various
resources to provide an adequate amount of knowledge to the readers while staying
within the scope of this book. This appendix lists additional sources of information
available for further reference of the topics covered in this book.

WEB SITES

1. Oracle Corporation—http://www.oracle.com

Home page of Oracle Corporation.

2. Oracle Magazine—http://www.oramag.com

For a free subscription to the bimonthly Oracle Magazine.

3. Oracle Technology Network (OTN)—http://otn.oracle.com

Oracle’s network to reach users—low-cost offers, free downloads, and so on.

4. Oracle University—http://education.oracle.com

ShahAppFv3.qxd 4/16/04 11:44 AM Page 425

426 App. F Additional References

Information about Oracle training tracks, schedules, online registration, and certi-
fications.

5. Oracle User’s Group—http://www.oug.com

The brainstorm of a number of dedicated user-group officers.

6. OracleZone—http://www.oraclezone.com

A wide variety of Oracle information, real-life problems, discussions, and trou-
bleshooting tips posted by Oracle users.

7. Orapub—http://orapub.com

A site founded by a former Oracle employee, Craig Shallahamer, devoted to all
Oracle-related issues.

8. My Oracle—http://my.oracle.com

A portal for creating a personalized home page for U.S. news, BBC news, CNET
news, stock market quotes, and other goodies.

BOOKS AND OTHER PUBLISHED MATERIAL

1. Relational database concepts:

Kroenke, David, Database Processing: Fundamentals, Design, and Implementation,
Prentice-Hall, January 2002.
Rob, Peter, and Treyton Williams, Database Design and Application Development,
McGraw-Hill, Primis Custom Publishing.

2. Oracle SQL:

Mishra, Sanjay, and Alan Beaulieu, Mastering Oracle SQL, O’Reilly and
Associates, April 2002.
Rischert, Alice, Oracle SQL Interactive Workbook 2/E, Prentice-Hall, December
2002.

3. Oracle PL/SQL:

Feuerstein, Steven, Oracle PL/SQL Programming 3/E, O’Reilly and Associates,
September 2002.
Rosenzweig, Benjamin and Elena Silvestrova, Oracle PL/SQL Interactive
Workbook 2/E, Prentice-Hall, October 2002.
Urman, Scott, Oracle9i PL/SQL Programming, McGraw-Hill Osborne, November
2001.

4. Miscellaneous topics:

Loney, Kevin, and Marlene Theriault, Oracle9i DBA Handbook, McGraw-Hill
Osborne, November 2001.
Price, Jason, Oracle9i JDBC Programming, McGraw-Hill Osborne, May 2002.

5. General reference:

Staron, Richard J., Guerrilla Oracle, Addison Wesley, April 2003.

ShahAppFv3.qxd 4/16/04 11:44 AM Page 426

Index
#sql, 360
%FOUND, 273
%ISOPEN, 272–273
%NOTFOUND, 273–274
%ROWCOUNT, 274
%ROWTYPE, 271, 299
%TYPE, 234
& Prefix, 101
&& Prefix, 125
(+) Operator, 163
:IN Parameter, 361
:NEW Record, 330
:OUT Parameter, 361
@ Command, 47
1:1 (One-to-One), 2
1:M (One-to-Many), 2
1NF to 2NF, 29, 32
2NF to 3NF, 30, 32

ABS Function, 136
ACCEPT Command, 102
Access Control, 207
Actions on Explicit Cursor, 270–272
Actual Parameter, 316
ADD_MONTHS Function, 140
Adding a Column, 83
Adding a Constraint, 84–86
Adding a new row, 98–102

INSERT Statement, 98–102
VALUES Clause, 98

Advanced Data Types
BFILE, 71–72
BLOB, 71–72
CLOB, 71–72
LONG, 71–72
LONG RAW, 71–72
NCHAR, 71–72
RAW, 71–72

AFTER Trigger, 331–333
Aggregate Functions, 132
ALL Operator, 181
ALL Privileges, 209–210
ALTER Privilege, 209
ALTER Procedure Statement, 317
ALTER TABLE Statement, 82–88

ADD Clause, 83
ADD CONSTRAINT Clause, 84
Adding a Constraint, 84–86
Adding a New Column, 83
CASCADE Clause, 88
Circular Reference, 85
DISABLE CONSTRAINT Clause, 88
Disabling a Constraint, 88
DROP COLUMN Clause, 87
DROP UNUSED COLUMN Clause,

87
Dropping a Column, 86–87
Dropping a Constraint, 87–88
ENABLE CONSTRAINT Clause, 88
Enabling a Constraint, 88
Modifications Allowed, 82
Modifications Allowed with

Restriction, 83
Modifications Not Allowed, 83
MODIFY Clause, 84

Modifying a Column, 84
RENAME COLUMN Clause, 88
RENAME CONSTRAINT Clause,

88
Renaming a Column, 88
Renaming a Constraint, 88
SET UNUSED Clause, 87

Alternate Text Editor, 49–51
Ampersand (&), 101
Analysis, 26
Anchor, 234–235

Anchor Column, 234–235
Anchor Variable, 234–235

Anchored Declaration, 234–235, 271
%ROWTYPE Attribute, 271
%TYPE Attribute, 235
Nested Anchoring, 234–236

AND Operator, 115
Anomaly, 26–27

Deletion Anomaly, 26
Insertion Anomaly, 26
Update Anomaly, 27

Anonymous Block, 228
ANY Operator, 181
APPEND Command, 48
Applets, 351
Applications of Relational Algebra,

14–15
Archive Log Files, 373
Arithmetic Operations, 113
Arithmetic Operators, 113
ARRAYSIZE Command, 410
ASC Keyword, 123
Ascending Sorting Order, 123
Assigning Values to PL/SQL Table,

302–303
Aggregate Assignment, 303
Assignment in a Loop, 302
Direct Assignment, 302

Assignment, 12
Assignment Operation, 236
Assignment Operator, 236
Associative Entity, 23
Asterisk (*) Wild Card, 106
Attributes, 2
AUTOCOMMIT Command, 204, 410
AVG Function, 147–148

Background Processes, 369
Basic Loop, 255–256
Basic Loop Versus WHILE Loop, 257
BEFORE Trigger, 330–331
BETWEEN. . . AND Operator, 115,

117–118
BFILE Type, 71
Bind Variables, 237
BLOB Type, 71
Blocks, 372
Boolean Literals, 228
BOOLEAN Type, 233
BREAK Command, 410
BTITLE Command, 411
Built-in Functions, 132

Group or Aggregate Functions, 132
Single-Row Functions, 132

Built-in Table Methods, 304–305
COUNT, 304
DELETE, 304
EXISTS, 304
EXTEND, 304
FIRST, 304
LAST, 304
NEXT, 304
PRIOR, 304
TRIM, 304

Business Rules, 23

Callable Statement Class, 343
Cardinality, 22
Cartesian Product, 11, 157–158
CASCADE CONSTRAINTS Clause,

211
CASE Structure, 127–128, 143–144
CASE . . . END CASE Statement, 251
CEIL Function, 137
Central Transaction Log, 41
CHANGE Command, 48
CHAR, 69
Character data, 98
Character Functions, 132–136
Character Literals, 228
CHECK Constraint, 75
CKPT Process, 370
CLEAR BUFFER Command, 48, 411
CLEAR COLUMNS Command, 411
CLEAR SCREEN Command, 48, 411
Client Computer, 37
Client Failure, 39, 40
Client/Server Database, 39–41
Client/Server Environment, 41
CLOB Type, 71
CLOSE Statement, 272
COALESCE Function, 142–143
Cold Backup, 373
Collections, 296
COLSEP Command, 411
Column Alias, 110
COLUMN Command, 110–112, 411
Column Level Constraint, 73
COMMENT on Tables and Columns, 82
Comments, 230

Multi-Line Comment, 230
Single-Line Comment, 230

COMMIT Statement, 8, 208
Comparison Operators, 115–122

BETWEEN. . . AND, 115–118
IN, 115, 119
IS NULL, 115, 120
LIKE, 115, 121–122

Complex View, 192
Composite Attribute, 24
Composite Data Types, 230, 296
Composite Entity, 23
Composite Key, 7
Composite Unique Key, 75
COMPUTE Command, 411
CONCAT Function, 134
Concatenation, 112–113

Concatenation Character (||), 112–113
CONNECT Command, 376, 412

ShahIndv3.qxd 4/17/04 9:58 AM Page 427

428 Index

CONNECT Role, 384
Connectivity, 22
Constant Declaration, 234
Constraints

Constraints Types, 72
Defining a Constraint, 73
Integrity Constraint, 72
Naming a Constraint, 72
Value Constraint, 72
Viewing Constraint Names, 80–81

Control File, 372
Control Structures, 245

Looping Structure, 245
Selection Structure, 245
Sequential Structure, 245

Conversion from 1NF to 2NF, 29–30
Conversion from 2NF to 3NF, 30–31
Conversion Functions, 144–145
COPY Command, 412
Correlated Subquery, 185–188

EXISTS Operator, 186–187
NOT EXISTS Operator, 186–187

COUNT Function, 147–149
COUNT Method, 304
Counter, 255
CREATE INDEX Statement, 202
CREATE SEQUENCE Statement, 196
CREATE TABLE Statement, 76–77
CREATE TABLESPACE Statement,

378
CREATE USER Statement, 208, 380
CREATE VIEW Statement, 192
Creating a Sequence, 196
Creating a Table, 76–78
Creating a Table with Subquery,

176–177
Creating a Tablespace, 378–379
Creating a View, 192
CURRVAL PseudoColumn, 198
Cursor, 268

Dynamic Cursor, 268
Static Cursor, 268

Cursor Attributes, 272–274
Cursor For Loops, 274–276

Using a Subquery, 276
Cursor Variable Return Type, 279
Cursor Variables, 279–280

Fetching, 280
Opening, 280
REF Cursor Type, 279

Cursor with Parameters, 277–279
Customized Prompt, 102

ACCEPT, 102
PROMPT, 102

Data, 1, 3
Data Control Language (DCL), 43
Data Definition Language (DDL), 43
Data Dictionary, 4, 79–82
Data Dictionary Views, 334, 387–388

Dynamic Performance Views, 388
Static Views, 387
USER_ERRORS View, 334
USER_OBJECTS View, 334
USER_PROCEDURES View, 334
USER_SOURCE View, 334
USER_TRIGGERS View, 334

Data File, 372

Data Manipulation Language (DML),
43, 97–105

DELETE Statement, 97
INSERT Statement, 97
UPDATE Statement, 97

Data Modeling, 21–22
Data Retrieval Language, 43
Data Types, 68–72

CHAR, 69
DATE, 70
NUMBER, 70
VARCHAR2, 69

Database, 1, 2, 371
Database Administrator (DBA), 41,

368–369
Database Design, 26

Analyze, 26
Synthesize, 26

Database Management System
(DBMS), 3–4

Database Security, 207
DATE, 70
Date Arithmetic, 139
Date Format, 70, 98–99, 137
Date Functions, 137–141
DATE Values, 98
Date/Time Format, 145
DBA, 41, 368–369
DBA Role, 384
DBMS, 3–4
DBMS_OUTPUT.PUT_LINE, 239
DBWR Process, 370
Declaration Section, 229
DECODE Function, 143
Default Column Width, 107
Default Date Format, 70, 98–99, 144, 146
DEFAULT Keyword, 100
Default Tablespace, 380
DEFAULT Value, 76
DEFINE Command, 126, 412
Defining a Constraint, 73–74

At Column Level, 73
At Table Level, 74

Degree, 5
DEL Command, 48
DELETE Method, 304
DELETE Privilege, 209
DELETE Statement, 104, 262–263
Deleting Rows, 104–105

DELETE Statement, 104
Deleting with Subquery, 180–181
Deletion Anomaly, 26
Demand on Client and Network, 38, 40
Denormalization, 32
Dependency, 24–26

Full Dependency, 25
Partial Dependency, 25
Total Dependency, 25
Transitive Dependency, 25

Dependency Diagram, 28–29
DESC Keyword, 123
Descending Sorting Order, 123
DESCRIBE Command, 412
Developers Suite, 42

Designer, 42
Forms Developer, 42
JDeveloper, 42
Oracle Reports, 42

Difference, 10–11
Differences, SQL*Plus and SQL*Plus

Worksheet, 52–53

Direct Assignment, 302
Disabling a Constraint, 88
DISCONNECT Command, 412
DISTINCT Keyword, 109
Division, 13–14
Domain, 5
DriverManager Class, 340
DROP TABLE Statement, 89
DROP USER Statement, 382
Dropping a Column, 86–87
Dropping a Constraint, 87–88
Dropping a Sequence, 200
Dropping a Table, 89
DUAL Table, 137–138
Dummy Column, 138
Dynamic Cursor, 268
Dynamic Performance Data Dictionary

View, 388

ECHO Command, 413
EDIT Command, 47
Editing Commands, 48
Enabling a Constraint, 88
Enclosing Record, 299
Entering Default Value, 100
Entering Null Values, 100

Explicit Method, 100
Implicit Method, 100

Enterprise Manager, 42
Instance Manager, 42
iSQL*Plus, 42
Security Manager, 42
SQL Worksheet, 42
Storage Manager, 42
Warehouse Manager, 42
XML Database Manager, 42

Entity, 1, 21
Entity Integrity, 8
Entity Set, 2, 21
Entity-Relationship Model, 21
Environment Variables, 107
Equijoin, 13, 158–161
E-R Diagram, 21, 22, 60, 63

IU College, 60
N2 Corporation, 63

ERD, 22
Error Codes, 91
Error Messages, 91–93
Escape Character, 122
ESCAPE Keyword, 122
Exception Declaration, 286
Exception Handling, 281
Exception Handling Sections, 229
Exception Trapping Functions, 285

SQLCODE, 285
SQLERRM, 285

Exceptions, 268, 280–289
Non-predefined Oracle Server Error,

283–284
Predefined Oracle Server Error,

282–283
Types, 281–282
User-defined Exception, 286–287

Exclusive Lock, 206
Executable Section, 229
EXECUTE Command, 316, 326, 413
EXECUTE Privilege, 209
ExecuteQuery() Method, 342
ExecuteUpdate() Method, 343

ShahIndv3.qxd 4/17/04 9:58 AM Page 428

Index 429

EXISTS Method, 304
EXISTS Operator, 186–187
EXIT Command, 48, 413
EXIT Statement, 255
EXP, 373
EXP/IMP, 373
Explicit Cursor, 268–274

Actions on, 270
Attributes, 272–274
Declaring, 269
Fetching Data, 271
Opening, 271

Explicit Index, 272
Explicit Null, 100
Export, 373
EXTEND Method, 304
Extents, 372
EXTRACT Function, 140

FEEDBACK Command, 413
FETCH Statement, 271
File System Terminology, 6
File-related Commands, 47
Firing of Triggers, 328
FIRST Method, 304
First Normal Form (1NF), 27–28
Fixed-length Character Value, 69
Fixed-point Decimal, 70
Floating-point Decimal, 70
FLOOR Function, 137
FOR Loop, 258–259
FOR UPDATE OF Clause, 207
Foreign Key, 7
FOREIGN KEY Constraint, 74
Formal Parameter, 316
Formatting a column, 111
Forms Developer, 42
Full Dependency, 25
Function, 230, 313, 319–323

Body, 320
Calling a Function, 320
Calling from SQL, 323
Header, 319
Parameters, 320
Return Type, 320

Gateway, 374
General Functions, 133
GET Command, 47
GOTO Statements, 267
GRANT Statement, 209, 386
GROUP BY Clause, 149–150
Group Functions, 132, 147–149
Grouping Data, 149–152

HAVING Clause, 151–152
HELP Command, 49, 413
HELP INDEX Command, 49–50
HOST Command, 413
Host Variables, 237, 361
Hot Backup, 373
Hot Standby Database, 373
IF. . . THEN. . . ELSE . . . END IF

Statement, 247–248
IF. . . THEN. . . ELSIF. . . END IF

Statement, 248–251
IF. . . THEN. . . END IF Statement,

246–247
IMP, 373
Implicit Cursor, 268
Implicit Cursor Attribute, 274

SQL Prefix, 274

Implicit Index, 202
Implicit Null, 100
Import, 373
Import Statement, 340
IN Operator, 115, 119, 181
IN OUT Parameter, 315
IN Parameter, 315
Indentation, 247
Index, 201–203, 372

Composite Index, 202
Creating an Index, 202
Explicit Index, 202
Implicit Index, 202
Rebuilding an Index, 203

INDEX BY BINARY_INTEGER
Clause, 300–301

INDEX Privilege, 209
Indo-US (IU) College Student

Database, 56–61
COURSE Table, 57
CRSSECTION Table, 58
DEPARTMENT Table, 58
FACULTY Table, 57
LOCATION Table, 59
MAJOR Table, 58
REGISTRATION Table, 58
ROOM Table, 58
STUDENT Table, 57
Table Definitions, 390–393
TERM Table, 58

Information, 3
Information System, 4
INIT.ORA, 372
INITCAP Functions, 133
Initial Roles, 384
Initial Users, 383
Inline View, 184
Inner Query, 174
INPUT Command, 48
INSERT ALL Statement, 179

Conditional, 179
Unconditional, 179

INSERT FIRST Statement, 179
INSERT Privilege, 209
INSERT Statement, 98–102, 262
Inserting a Row with Subquery,

178–179
Insertion Anomaly, 26
Instance, 371
INSTEAD OF Trigger, 333–334
INSTR Function, 134
Integer, 70
Integrated Development Environment

(IDE), 339
Integrity Constraint, 72

FOREIGN Key, 74
PRIMARY Key, 74

Integrity Rules, 8
Entity Integrity, 8
Referential Integrity, 8

INTERSECT Operator, 169
Intersection, 10
Invalid Names, 68
IS NULL Operator, 115, 120
iSQL*Plus, 54–56
IU College Student Database, 390–393

Table Definitions, 390–393

Java, 339–344
Closing Connection, 344
Importing JDBC Class, 340

Importing Package, 340
Interacting with the Oracle

Database, 341–342
Loading JDBC Drivers, 340

Java Applications, 339
Java Language, 339
JDBC, 339
JDBC-ODBC Bridge Driver, 339
JDBCODBCDriver Class, 340
JDeveloper, 42
JDK, 339
Join, 12–13, 157

Equijoin, 158–161
Non-Equijoin, 161–162
Outer Join, 163–164
Self-Join, 165

Join Conditions, 159

Key, 7
Composite Key, 7
Foreign Key, 7
Primary Key, 7
Secondary Key, 7
Surrogate Key, 7

Labeling Loops, 259
LAST Method, 304
LAST_DAY Function, 140
LENGTH Function, 134
LENGTHB Function, 135
LENGTHC Function, 135
LGWR Process, 370
LIKE Operator, 115
LINESIZE Command, 413
LIST Command, 48
Literals, 228

Boolean, 228
Character, 228
Number, 228

LOB Data Types, 233–234
Locking, 206–207
Locking Rows for Update, 206–207
Logging into SQL*Plus, 44–46
Logical Operators, 115, 246
Logical Operators-Truth Table, 115, 246
Login Problems, 45–46
LONG Type, 71
LONG-RAW Type, 71
Looping Structure, 254–259

Basic Loop, 255–256
FOR Loop, 258
WHILE Loop, 257

LOWER Function, 133
LPAD Function, 134
LTRIM Function, 134

M:M (Many-to-Many), 3
M:N (Many-to-Many), 3
Many-to-Many Relationship, 23
Matching Parameter, 316

Named Notation, 316
Positional Notation, 316

MAX Function, 147–148
MERGE Statement, 185
Metadata, 4
MIN Function, 147–148
MINUS Operator, 169
MOD Function, 137
Modifying a Column, 84
Modifying a Sequence, 199
Modifying a Table, 82

ShahIndv3.qxd 4/17/04 9:58 AM Page 429

430 Index

MONTHS_BETWEEN Function, 140
Multiline Comment, 230
Multiple Column Sort, 124
Multiple Conditions, 250
Multiple-Row Subquery, 181–183
Multiplicity, 22
Multivalued Attribute, 24

NamanNavan (N2) Corporation
Employee Database, 61–64,
393–394

DEPENDENT Table, 62
DEPT Table, 62
EMPLOYEE Table, 61
POSITION Table, 62
QUALIFICATION Table, 62
SALARYLEVEL Table, 62
Table Definitions, 393–394

Named Block, 229, 313
Named Notation, 316
Naming a Constraint, 72–73
Naming Conventions, 68
Naming Rules, 68
Natural Join, 13
NCHAR Type, 71
NCLOB Type, 71
Nested Anchoring, 235–236
Nested Blocks, 259
Nested Functions, 146–147
Nested IF Statement, 253
Nested Loops, 259
Nested Query, 174
Nested Records, 299–300
Nested Tables, 307
Nesting Functions, 146–147
Nesting Group Functions, 153
Network, 38
NEXT Method, 304
NEXT_DAY Function, 140
NEXT_TIME Function, 140
NEXTVAL PseudoColumn, 197
NO_DATA_FOUND Exception, 260
Nonequijoin, 13, 161–162
Nonkey Column, 25
Nonpredefined Oracle Server

Exception, 282–284
Non-procedural Language, 15
Normal Form, 26–28

First Normal Form (1NF), 27–28
Second Normal Form (2NF), 28
Third Normal Form (3NF), 28

Normalization, 26, 32–34
NOT EXISTS Operator, 186–187
NOT IN Operator, 119
NOT NULL CHECK Constraint, 76
NOT NULL Constraint, 75
NOT NULL Variables, 234
NOT Operator, 115
Notepad, 49–51, 78

Alternate Editor, 78
NOWAIT Clause, 207
NULL FIRST Keywords, 123
NULL Value, 100, 114

Explicit Null, 100
Implicit Null, 100

NULLIF Function, 143
NUMBER Type, 70
Number Format, 144
NUMBER Sub-data Types, 232

Numeric Data, 98
Numeric Functions, 136–137
Numeric Literals, 228
NUMWIDTH Command, 413
NVL Function, 114, 141
NVL2 Function, 142

Object, 417
Object Column, 418
Object Privileges, 209, 211

ALL, 209–211
ALTER, 209–211
DELETE, 209–211
EXECUTE, 209–211
INDEX, 209–211
INSERT, 209–211
REFERENCES, 209–211
SELECT, 209–211
UPDATE, 209–211

Object Table, 418–419
Deleting Rows, 419
Inserting Row, 419
Retrieving Data, 419
SQL Queries, 418
Updating an Object, 419

Object Type, 417
Object View, 417
ODBC (Open Database Connectivity),

374
OEM, 375
ON DELETE CASCADE, 74
Online Help, 49, 91–93
OPEN Statement, 271
Opening a Cursor Variable, 280
Optimistic Locking, 39
Optional Relationship, 23
OR Operator, 115
Ora.hlp File, 49
Oracle Data Source, 344
Oracle Errors, 49
Oracle Reports, 42
Oracle Table, 76–90

Altering a Table, 82–88
Creating a Table, 76–82
Displaying Structure, 80
Dropping a Table, 89
Renaming a Table, 89
Truncating a Table, 89–90

Oracle thin Driver, 348
ORACLE_SID, 372
Oracle9i, 41–42, 419–424

What’s New, 419–424
OracleDriver Class, 340, 348
ORDER BY Clause, 122, 135, 151
Order of Arithmetic Operations, 113
Order of Logical Operations, 117–118
Order of Precedence, 117–118
OTN, 91
OUT Parameter, 315
Outer Join, 13, 163–164
Outer Query, 174

Package, 230, 323–326
Body, 325–326
Objects, 323–324
Specification, 324–325
Structure, 324

PAGESIZE Command, 413
Parallel Server, 373
Parameter File, 372

Parameter Types, 315
IN, 315
IN OUT, 315
OUT, 315

Partial Dependency, 25, 32
PAUSE Command, 414
P-Code, 313–314
Percent (%) Wild Card, 121
Performance, 373
Personal Database Management

System, 37–39
PL/SQL, 1, 42,225–229, 230, 238–240,

244, 253, 260–264, 306–309,
423–424

A Procedural Language, 41, 225
Anchored Declaration, 234–236
Arithmetic Operators, 240
Assignment Operation, 236
Block Structure, 228

Anonymous, 228
Named, 228

Built-in Functions, 260
Comments, 230

Multiline, 230
Single Line, 230

Composite Data Types, 296
Control Structures, 245

Looping, 245
Selection, 245
Sequence, 245

Data Manipulation Language,
262–263

Data Types, 230–234
BFILE, 234
BLOB, 233
BOOLEAN, 233
CHAR, 231
CLOB, 233
Composite, 230, 296
DATE, 233
LOB, 233
NCLOB, 234
NLS, 233
NUMBER, 232
Scalar, 230–234

BOOLEAN, 233
CHAR, 231
DATE, 233
NUMBER, 232
VARCHAR2, 231–232

Embedding SQL in Block, 260–264
Fundamentals, 227
History, 226
Literals, 228
Logical Operators, 246
Mandatory Keywords, 229
Printing, 239–240
Printing in

DBMS_OUTPUT.PUT_LINE,
239

Record Type, 297
Records, 297–300
Relational Operators, 245
Reserved Words, 227
Sections, 229

Declaration, 229
Exception Handling, 229
Executable, 229

SELECT. . . INTO Statement, 260
SQL in PL/SQL, 260–264

ShahIndv3.qxd 4/17/04 9:58 AM Page 430

Index 431

Substitution Variable, 238–239
Syntax-Quick Reference, 395–403
Table Assignment, 302–303
Table Columns, 300
Table Index, 300
Table Type, 300
Tables, 300–306
Transaction Control Statements, 264
User-Defined Identifiers, 227
Variable Declaration, 234
Varrays, 306–309
What’s New in 9i, 423–424

PL/SQL from SQLj, 364–365
PL/SQL Keywords Reference, 396
PL/SQL Records, 297–300

Creating, 297
Nested Records, 299
Referencing Fields, 298
Working with, 298

PL/SQL Statement Syntax, 403–409
PL/SQL Tables, 300–306

Assigning Values to Rows, 302–303
Built-in Methods, 304
Declaring, 300–301
INDEX BY BINARY_INTEGER

Clause, 300–301
Referencing Elements, 301–302
Table of Records, 305–306

PL/SQL Varray, 306–309
Varray of Varray, 307

Plus (+) Operator, 163
Positional Notation, 316
POWER Function, 136
PRAGMA EXCEPTION_INIT,

284–285
Precision, 70
Predefined Oracle Server Error List,

282
Predefined Oracle Server Exception,

281–283
PreparedStatement Class, 343
Primary Key, 7
PRIMARY KEY Constraint, 74
PRINT Command, 237–238
PRIOR Method, 304
Private Module, 325
Procedural Language, 8
Procedure, 230, 313–315

Body, 315
Calling a Procedure, 314
Creating a Procedure, 314
Header, 315
Parameters, 315

Product, 11–12
Projection Operation, 11, 114
PROMPT Command, 102
PUBLIC Keyword, 201, 210
Public Module, 325–326
PUBLIC Synonym, 201

RAISE Statement, 286
RAISE_APPLICATION_ERROR

Procedure, 287–288
RAW Type, 71
RDBMS, 4–5, 20
Read Consistency, 206
Record Name Qualifier, 298
Redo Log File, 372
Redundant Data, 26
REF CURSOR Type, 279

REF Keyword, 418
Reference Books, 426–427
Reference Web sites, 425–426
REFERENCES Privilege, 209
Referencing Fields in a PL/SQL

Record, 298
Referential Integrity, 8
Relation, 5
Relational Algebra, 8, 9–14
Relational Calculus, 8, 15–16
Relational Languages, 8–16

Relational Algebra, 8, 9–14
Relational Calculus, 8, 15–16

Relational Operators, 103
Relational Schema, 23
Relational Terminology, 6
Relationship, 2–3, 21

Many-to-Many, 3
One-to-Many, 2
One-to-One, 2

REMARK Command, 414
Removing a View, 195
RENAME Statement, 89
Renaming a Table, 89
REPLACE Function, 134
Replication, 373
RESOURCE Role, 384
Resources, 38
Restricting Data, 114
ResultSet Class, 342
ResultSetMetaData Class, 342–343
Retrieving Data, 105–108

SELECT Query, 105
RETURN Statement, 319
REUSE STORAGE Clause, 90
REVOKE Statement, 210–211
RMAN, 373
Roles, 208
Rollback Segment, 372
ROLLBACK Statement, 98, 104, 204
ROUND Function, 136
ROW Trigger, 331
Row Variable, 15
ROWID PseudoColumn, 203
ROWID Type, 71
ROWNUM PseudoColumn, 183
RPAD Function, 134
RTRIM Function, 134
RUN Command, 48

Sample Databases, 56–64, 390–394
Indo-US (IU) College Student

Database, 56–61
NamanNavan (N2) Corp Employee

Database, 61–64
SAVE Command, 47
SAVEPOINT Statement, 204
Scalar Data Types, 230–234
Scale, 70
Schema, 372

SYS Schema, 372
SYSTEM Schema, 372

Searched CASE Statement, 252
Second Normal Form (2NF), 28
Secondary Key, 7
Security Manager, 380
Segments, 372
SELECT (*), 106
SELECT Statement, 97
SELECT. . . FOR UPDATE Cursor,

276–277

SELECT. . . INTO Statement, 260
Selection, 11
Selection Operation, 114
Selection Structure, 245–254

CASE, 251
IF-THEN-ELSE-END IF, 247–248
IF-THEN-ELSIF-END IF, 248–251
IF-THEN-END IF, 246–247
Nested IF, 253
Searched CASE, 252

Self-Join, 13, 165
Sequence, 196–200

Creating a Sequence, 196–197
CURRVAL PseudoColumn, 198
Dropping a Sequence, 200
Modifying a Sequence, 199
NEXTVAL PseudoColumn, 197
Using a Sequence, 198–199

Sequence Structure, 245
SERVEROUTPUT Environment

Variable, 239
Servers, 38
SET Clause, 103
SET Command, 414
SET DEFINE OFF Command, 101
SET DEFINE ON Command, 101
SET FEEDBACK Command, 107
SET LINESIZE Command, 107
Set Operators, 166–170

INTERSECT, 169
MINUS, 169–170
UNION, 166–167
UNION ALL, 167–168

SET SERVEROUTPUT ON
Command, 239

SGA, 369
Share Lock, 206
SHOW ALL Command, 107
SHOW Command, 414
SHOW ERROR Command, 317
SHOWMODE Command, 414
SHUTDOWN Command, 378, 414
SIGN Function, 137
Simple Attribute, 24
Simple View, 192
Single Line Comment, 230
Single-Row Functions, 132

Character, 133
Conversion, 133
Date, 133
General, 133
Number, 133

Single-Row Subquery, 174–181
Single-Valued Attribute, 24
SMON Process, 370
SOME Operator, 181
Sort By Column Alias, 124
Sorting, 122–125

Ascending (ASC), 123
By Column Alias, 124
By Multiple Columns, 124
Default, 123
Descending (DESC), 123
Order BY Clause, 122

SPOOL Command, 48, 91, 414
SPOOL OFF Command, 91
Spooling, 90–91
SQL, 17, 41, 43, 419–422

What’s New in 9i, 419–422
SQL IN PL/SQL, 260–264

ShahIndv3.qxd 4/17/04 9:58 AM Page 431

432 Index

SQL Keywords Reference, 395
SQL Review, Supplementary

Examples, 215–224
SQL Statement Syntax, 397–403
SQL Statements, 43

Data Control Language, 43
Data Definition Language, 43
Data Manipulation Language, 43
Data Retrieval, 43
Transaction Control, 43

SQL Syntax, Quick Reference, 395–403
SQL versus SQL*Plus, 47
SQL*Plus, 42
SQL*Plus Commands, 46–48

Editing Commands, 48
File-Related Commands, 47

SQL*Plus Editing Commands, 48, 416
SQL*Plus Environment, 43
SQL*Plus File-Related Command, 47,

416
SQL*Plus Worksheet, 51–53
SQLCASE Command, 415
SQLCODE Function, 285
SQLERRM Function, 285
SQLj, 358–365

Configuring Oracle SQLj, 359
Connecting to the Oracle Database,

360
Creating a SQLj Project, 359
Embedding SQL Statements, 360
Importing classes, 360

SQLj Iterator, 361–364
Named Iterator, 361–362
Positional Iterator, 363–364

SQLPROMPT Command, 415
Stand-Alone Environment, 41
START Command, 47
STARTUP Command, 377
Statement Class, 341–342
Statement Trigger, 331
Static Cursor, 268

Explicit, 269
Implicit, 268

Static Data Dictionary View, 387
STORAGE Clause, 78–79
Storage Manager, 378
Subquery, 174–181

Creating a Table with Subquery,
176–178

Deleting Using a Subquery, 180–181
INSERT Using a Subquery, 178–179
Inserting into Multiple Tables, 179
Multiple-Row Subquery, 174
Single-Row Subquery, 174
Updating Using a Subquery, 180

Substitution Variable, 100–101,
125–126

&& Prefix, 125
Ampersand (&), 101

SUBSTR Function, 134
SUM Function, 147–148
Surrogate Key, 7
Synonym, 200–201

Creating a Synonym, 200
Dropping a Sequence, 201
PUBLIC Synonym, 201

Synthesis, 26

SYS User, 383
SYSDATE Function, 137
System Global Area, 369
System Privileges, 386

Types, 386
System Security, 207
SYSTEM User, 383

Table, 5, 68, 372
Displaying Names, 79
Displaying Structure, 80

Table Modification, 82–86
Table Alias, 160
Table Level Constraint, 74
Table Locking, 39, 40
Table of a Table, 306
Table of Cursor, 306
Table of Records, 305–306
Table Types, 90
Tablename Qualifier, 159
Tablespace, 67, 372, 378
Tablespace Information, 82
Temporary Segment, 372
Theoretical Relational Languages, 8

Relational Algebra, 8
Relational Calculus, 8

Third Normal Form (3NF), 28
Three-Tier Architecture, 41
TIME Command, 415
Time Format, 70, 99
TIMING Command, 415
TNSNAMES.ORA, 373
TO_CHAR Function, 99, 144
TO_DATE Function, 99, 144
TO_NUMBER Function, 144
TOO_MANY_ROWS Exception, 260,

269
TOP-N Analysis, 183–185
TOP-N Column, 183
Total Dependency, 25, 32
Transaction Control, 43
Transaction Control in PL/SQL, 264
Transaction Control Language, 43
Transaction log, 39
Transaction Processing, 39, 41
Transactions, 204–206

AUTOCOMMIT, 204
COMMIT, 204
ROLLBACK, 204
SAVEPOINT, 204

Transitive Dependency, 25, 32
Trigger Types, 330
Triggers, 230, 328–334

Creating a Trigger, 328
Firing the Trigger, 328
Types, 330

TRIM Function, 134
TRIM Method, 304
TRUNC Function, 136
TRUNCATE Statement, 104
TRUNCATE TABLE Statement, 89
Truncating a Table, 89
TTITLE Command, 415
Tuple, 5

UNDEFINE Command, 102, 126, 415
Underscore (_) Wild Card, 121

Union, 9–10
UNION ALL Operator, 167
Union Compatible, 9
UNION Operator, 166
UNIQUE Constraint, 75
Universal Installer, 374
Unnormalized Table, 27
Update Anomaly, 27
UPDATE Privilege, 209
UPDATE Statement, 103, 263
Updating Rows, 102–104

UPDATE . . . SET, 103
Updating with Subquery, 180
UPPER Function, 133
User Creation, 208, 380–382
USER_ERRORS View, 334
USER_INDEXES Table, 202
USER_OBJECTS View, 334
USER_PROCEDURES View, 334
USER_SOURCE View, 334
USER_SYNONYMS Table, 201
USER_TRIGGERS View, 334
USER_VIEWS Table/View, 194
User-Defined Exceptions, 286–288
Users, 208
Using a Sequence, 198

V$ Views, 388
V$BGPROCESS, 371
Valid Names, 68
Value Constraint, 72

CHECK, 75
NOT NULL, 75
UNIQUE, 75

VARCHAR2 Type, 69
VARIABLE Command, 237
Variable Declaration, 234
Variable-Length Character Value, 69
Venn Diagram, 167
VERIFY Command, 415
Version, 372
View, 191–196

Altering a View, 195–196
Complex View, 192
Creating a View, 192–194
Removing a View, 195
Simple View, 192

Viewing Table Constraints, 80–81
Viewing Table Names, 79
Viewing Table Structure, 80

Weak Entities, 24
WHEN OTHERS Clause, 286
WHERE Clause, 114, 135
WHERE CURRENT OF Clause, 277
WHILE Loop, 257
Wild Cards, 121–122

% (percent), 121
_ (underscore), 121

WITH ADMIN OPTION Clause,
386–387

WITH CHECK Option, 192
WITH GRANT OPTION Clause, 210
WITH READ ONLY Option,

192–193
WRAP Command, 415

ShahIndv3.qxd 4/17/04 9:58 AM Page 432

	Cover
	Title
	Copyright
	Foreword by Alex Ephrem, Ph.d. ��������������������������������������
	Foreword by John W. Weber ���������������������������������
	Preface ���������������
	The Reader ������������������
	The Text ����������������
	The Software ��������������������
	Using the Text ����������������������
	Acknowledgments �����������������������

	Part 1: Database Concepts ���������������������������������
	Chapter 1 Database Concepts: A Relational Approach
	Database: an Introduction ���������������������������������
	Relationships ���������������������
	Database Management System (DBMS)
	The Relational Database Model �������������������������������������
	Integrity Rules �����������������������
	Theoretical Relational Languages ��
	Relational Algebra ��������������������������
	Applications of Relational Algebra ��
	Relational Calculus ���������������������������
	Final Note ������������������

	In a Nutshell... ������������������������
	Exercise Questions ��������������������������

	Chapter 2 Database Design: Data Modeling and Normalization ��
	Data Modeling
	Dependency
	Database Design
	Normal Forms
	Anomalies 26 ��������������������
	First Normal Form (1nf) 27 ����������������������������������
	Second Normal Form (2nf) 28 �����������������������������������
	Third Normal Form (3nf) 28 ����������������������������������

	Dependency Diagrams
	Conversion from 1nf to 2nf 29 �������������������������������������
	Conversion from 2nf to 3nf 30 �������������������������������������

	Denormalization
	Another Example of Normalization
	1nf to 2nf (removing Partial Dependencies) 32 ���
	2nf to 3nf (removing Transitive Dependencies) 32 ��
	Summary 32 ������������������

	In a Nutshell...
	Exercise Questions

	Part 2: Oracle Sql ��������������������������
	Chapter 3 Oracle9i: an Overview
	Personal Databases
	Demand on Client and Network
	Table Locking
	Client Failure
	Transaction Processing

	Client/server Databases
	Demand on Client and Network
	Table Locking
	Client Failure
	Transaction Processing

	Oracle9i: an Introduction
	The Environment SQL * Plus
	Structured Query Language (sql)
	Logging in to Sql * Plus
	Commands Sql * Plus
	Oracle Errors and Online Help
	Alternate Text Editors
	Worksheet SQL * Plus
	iSQL * Plus
	Sample Databases
	The Indo–us (iu) College Student Database
	The Namannavan (n2) Corporation Employee Database

	In a Nutshell ...
	Exercise Questions
	Lab Activity

	Chapter 4 Oracle Tables: Data Definition Language (DDL)
	Naming Rules and Conventions
	Data Types
	Varchar2
	Char
	Number
	Date

	Constraints
	Types of Constraints
	Naming a Constraint
	Defining a Constraint

	Creating an Oracle Table
	Storage Clause in Create Table

	Displaying Table Information
	Viewing a User’s Table Names
	Viewing a Table’s Structure
	Viewing Constraint Information
	Viewing Tablespace Information
	Comment on Tables and Columns

	Altering an Existing Table
	Adding a New Column to an Existing Table
	Modifying an Existing Column
	Adding a Constraint
	Dropping a Column (Oracle8i Onward)
	Dropping a Constraint
	Enabling/disabling Constraints
	Renaming a Column (oracle9i Version 9.2 Onward)
	Modifying Storage of a Table

	Dropping a Table
	Renaming a Table
	Truncating a Table
	Oracle’s Various Table Types
	Spooling
	Error Codes
	In a Nutshell ...
	Exercise Questions
	Lab Activity

	Chapter 5 Working with Tables: Data Management and Retrieval
	Data Manipulation Language (DML)
	Adding a New Row/record
	Rounding by Insert
	Renaming a Constraint (oracle9i Version 9.2 Onward)
	Entering Null Values
	Entering Default Values
	Substitution Variables

	Customized Prompts
	Updating Existing Rows/records
	Deleting Existing Rows/records
	Retrieving Data from a Table
	Select(*)
	Distinct Function
	Column Alias
	Column Command
	Concatenation

	Arithmetic Operations
	Order of Operation

	Restricting Data with a Where Clause
	Wild Cards

	Sorting
	Revisiting Substitution Variables
	Define Command
	Case Structure
	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 6 Working with Tables: Functions and Grouping
	Built-in Functions
	Single-row Functions
	Group Functions

	Grouping Data
	Having Clause
	Nesting Group Functions

	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 7 Multiple Tables: Joins and Set Operators
	Join
	Cartesian Product
	Equijoin
	Table Aliases
	Additional Conditions
	Nonequijoin
	Outer Join
	Self-join

	Set Operators
	Union
	Union All
	Intersect
	Minus

	In a Nutshell ...
	Exercise Questions
	Lab Activity

	Chapter 8 Subqueries: Nested Queries
	Subquery
	Single-row Subquery
	Multiple-row Subquery

	Top-n Analysis
	Important Note About Top-n Analysis

	Merge Statement
	Correlated Subquery
	Exists and Not Exists Operators

	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 9 Advanced Features: Objects, Transactions, and Data Control
	Views
	Creating a View
	Removing a View
	Altering a View

	Sequences
	Modifying a Sequence
	Dropping a Sequence

	Synonyms
	Index
	Rebuilding an Index

	Rowid Pseudocolumn
	Transactions
	Read Consistency and Locking

	Locking Rows for Update
	Controlling Access
	Users and Roles
	Object Privileges

	In a Nutshell ...
	Exercise Questions
	Lab Activity
	SQL REVIEW: SUPPLEMENTARY EXAMPLES
	Script for Creation of Tables
	Script for Insertion of Rows into Tables
	Insertion of Rows with Substitution Variables
	Alternate Method
	Display All Customer Information
	Display All Item Names and Their Respective Unit Price
	Display Unique Invoice Numbers from the Invitem Table
	Display Item Information with Appropriate Column Aliases
	Display Item Name and Price Using Concatenation
	Find the Total Value of Each Item Based on Quantity on Hand
	Find Customers from Florida
	Display Items with a Unit Price of at Least $5
	Find Items with a Unit Price Between $2 and $5
	Find Customers from the Tristate Area of New York, New Jersey, and Connecticut
	Find All Customers Whose Names Start with the Letter E 219 ��
	Find Items with the Letter W in Their Name 219 ��
	Sort All Customers Alphabetically 219 ���
	Sort All Items in Descending Order by Their Price 219 ���
	Sort All Customers by Their State and Also Alphabetically 219 ���
	Display All Customers from New Jersey Alphabetically 220 ��
	Display All Item Prices Rounded to the Nearest Dollar 220 ���
	Find the Payment Due Date If the Payment Is Due in Two Months from the Invoice Date 220 ���
	Display Invoice Dates in “september 05, 2003” Format 220 ��
	Find the Total,average, Highest, and Lowest Unit Prices 220 ���
	Display How Many Different Items Are Available for Customers 220 ��
	Count the Number of Items Ordered in Each Invoice 220 ���
	Find Invoices in Which Three or More Items Are Ordered 220 ��
	Find All Possible Combinations of Customers and Items (cartesian Product) 221 ���
	Find All Possible Combinations of Customers and Items (cartesian Product) 221 ���
	Display All Item Quantities and Item Prices for Invoices 221 ��
	Find the Total Price for Each Invoice 221 ���
	Use an Outer Join to Display Items Ordered and Not Ordered 221 ��
	Display Invoices, Customer Names, and Item Names Together (multiple Joins) 221 ��
	Find Invoices with Hammer as an Item 221 ��
	Find Invoices with Hammer as an Item by Using a Subquery 221 ��
	Display the Items Ordered in Invoice Number 1001 (subquery) 222 ���
	Find Items That Are Cheaper Than Nut 222 ��
	Create a New Table for All New Jersey Customers Based on the Existing Customer Table 222 ��
	Copy All New York Customers to the Newly Created Nj_customer Table 222 ��
	Rename Nj_customer Table to Nynj_customer 222 ���
	Find Customers Who Are Not from New York or New Jersey (set Operator) 222 ���
	Delete Rows from the Customer Table That Are Also in the Nynj_customer Table 223 ��
	Find the Items with the Top-three Prices 223 ��
	Find the Two Items with the Lowest Quantity on Hand
	Create a Simple View with Item Names and Item Prices Only
	Create a View That Displays Invoice Number and Customer Names for New Jersey Customers
	Create a Sequence That Can Be Used to Enter New Items into the Item Table
	Add a New Item into the Item Table with the Itemnum_seq Sequence
	Create a Synonym for the Invitem Table
	Create an Index File Based on Customer Name
	Lock Customer Bayer’s Record to Update State and Phone Number
	Give Everybody Select and Insert Rights on Your Item Table
	Revoke the Insert Option on the Item Table from User Bond

	Part 3: Pl/sql ����������������������
	Chapter 10 Pl/sql: a Programming Language
	A Brief History of Pl/sql
	Fundamentals of Pl/sql
	Reserved Words
	User-defined Identifiers
	Literals

	Pl/sql Block Structure
	Comments
	Data Types
	Character
	Number
	Boolean
	Date

	Other Data Types
	Nls
	Lob

	Variable Declaration
	Anchored Declaration
	Nested Anchoring
	Not Null Constraint for %type Declarations

	Assignment Operation
	Bind Variables
	Substitution Variables in Pl/sql
	Printing in Pl/sql
	Arithmetic Operators
	In a Nutshell....
	Exercise Questions
	Lab Activity

	Chapter 11 More on Pl/sql: Control Structures and Embedded Sql
	Control Structures
	Selection Structure
	Looping Structure

	Nested Blocks
	Sql in Pl/sql
	Select Statement in Pl/sql

	Data Manipulation in Pl/sql
	Insert Statement
	Delete Statement
	Update Statement

	Transaction Control Statements
	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 12 Pl/sql Cursors and Exceptions
	Cursors
	Types of Cursors

	Implicit Cursors
	Explicit Cursors
	Declaring an Explicit Cursor
	Actions on Explicit Cursors

	Explicit Cursor Attributes
	%isopen
	%found
	%notfound
	%rowcount

	Implicit Cursor Attributes
	Cursor for Loops
	Cursor for Loop Using a Subquery

	Select ... for Update Cursor
	Where Current of Clause
	Cursor with Parameters
	Cursor Variables: an Introduction
	Ref Cursor Type
	Opening a Cursor Variable
	Fetching from a Cursor Variable

	Exceptions
	Types of Exceptions
	Predefined Oracle Server Exceptions
	Nonpredefined Oracle Server Exceptions
	User-defined Exceptions
	Raise_application_error Procedure

	More Sample Programs
	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 13 Pl/sql Composite Data Types: Records, Tables, and Varrays
	Composite Data Types
	Pl/sql Records
	Creating a Pl/sql Record
	Referencing Fields in a Record
	Working with Records
	Nested Records

	Pl/sql Tables
	Declaring a Pl/sql Table
	Referencing Table Elements/rows
	Assigning Values to Rows in a Pl/sql Table
	Built-in Table Methods
	Table of Records

	Pl/sql Varrays
	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 14 Pl/sql Named Blocks: Procedure, Function, Package, and Trigger
	Procedures
	Calling a Procedure
	Procedure Header
	Procedure Body
	Parameters
	Actual and Formal Parameters
	Matching Actual and Formal Parameters

	Functions
	Function Header
	Function Body
	Return Data Types
	Calling a Function
	Calling a Function from an Sql Statement

	Packages
	Structure of a Package
	Package Specification
	Package Body

	Triggers
	Before Triggers
	After Triggers
	Instead of Trigger

	Data Dictionary Views
	In a Nutshell...
	Exercise Questions
	Lab Activity

	Part 4: Miscellaneous Topics ������������������������������������
	Chapter 15 Oracle with Java: a Tutorial on Jdbc and Sqlj
	Java: a Programming Language
	JDBC
	Importing Package or Jdbc Classes
	Loading Jdbc Drivers
	Connecting to the Oracle Database
	Interacting with the Oracle Database
	Closing Connection

	Sun’s Jdbc Driver and the Oracle Data Source
	Creating a Data Source in the Windows Control Panel
	Sample Java Code

	Oracledriver and Oracle Thin Driver
	Setting Up Oracle.jdbc.driver.oracledriver for Sdk1.4 or Jbuilder8
	Sample Java Code

	Java Applet: Putting It All Together
	Sqlj
	Configuring Oracle Sqlj in Jbuilder8
	Creating an Sqlj Project

	Host Variables
	Sqlj Iterators
	Named Iterator
	Positional Iterator

	Pl/sql from Sqlj
	In a Nutshell...
	Exercise Questions
	Lab Activity

	Chapter 16 Oracle9i: Architecture and Administration
	Database Administrator (DBA)
	Oracle Architecture: An Overview
	Installation
	Connecting to the Oracle9i Database
	Instance and Database
	Working with Oracle Enterprise Manager (OEM)
	Tablespace with Storage Manager
	User and Role with Security Manager

	System Privileges
	Oracle Data Dictionary
	In a Nutshell...
	Exercise Questions

	Appendix a Sample Databases: Table Definitions ��
	The Indo–us (iu) College Student Database 390 ���
	The Namannavan (n2) Corporation Employee Database

	Appendix B Quick Reference to Sql and Pl/sql Syntax ���
	Sql Key Words
	Pl/sql Key Words
	Sql and Pl/sql Syntax
	Creating a Table
	Column-level Constraint
	Table-level Constraint
	Adding a Column to an Existing Table
	Modifying an Existing Column
	Adding a Constraint to a Table
	Dropping a Column (oracle8 Onward)
	Setting a Column as Unused (oracle8 Onward)
	Dropping an Unused Column (oracle8 Onward)
	Renaming a Column (oracle9i Onward)
	Renaming a Constraint (oracle9i Onward)
	Dropping a Table
	Renaming a Table
	Truncating a Table
	Inserting a New Row into a Table
	Customized Prompts
	Updating Rows
	Deleting Rows
	Dropping a Constraint
	Enabling|disabling a Constraint
	Retrieving Data from a Table
	Define Command
	Decode Function
	Case Structure
	Joining Tables: Equijoin or Outer Join
	Set Operation
	Select Subquery
	Creating a Table Using a Subquery
	Inserting a Row Using a Subquery
	Inserting into Multiple Tables
	Updating Using a Subquery
	Deleting Using a Subquery
	Top-n Query
	Merge Statement
	Creating a View
	Altering a View
	Dropping a View
	Creating a Sequence
	Modifying a Sequence
	Creating a Synonym
	Dropping a Synonym
	Creating an Index
	Rebuilding an Index
	Locking Rows for Update
	Creating a User
	Changing a User’s Password
	Granting System Privileges
	Granting Object Privileges
	Revoking Privileges
	Pl/sql Anonymous Block
	Pl/sql Variable/constant Declaration
	Anchored Variable Declaration
	Assignment Operation
	If-then-end If
	If-then-else-end If
	If-then-elsif-end If
	Case Statement
	Basic Loop
	While Loop
	For Loop
	Bind/host Variable
	Select-into in Pl/sql
	Explicit Cursor Declaration
	Opening an Explicit Cursor
	Fetching a Row from an Explicit Cursor
	Closing an Explicit Cursor
	Cursor for Loop
	Cursor for Loop with a Subquery
	Where Current of Clause
	Cursor with Select-for Update
	Cursor with Parameters
	Ref Cursor Type
	Opening a Cursor Variable
	Fetching from a Cursor Variable
	Exception Section
	Pragma Exception_init Directive
	Raise_application_error Procedure
	Creating a Pl/sql Record
	Declaring a Pl/sql Table
	Declaring a Pl/sql Varray
	Pl/sql Procedure
	Calling a Procedure
	Recompiling a Procedure
	Pl/sql Function
	Pl/sql Package Specification
	Pl/sql Package Body
	Pl/sql Trigger
	Creating a Tablespace
	Starting Up an Instance
	Shutting Down an Instance
	Creating a User from the Command Line with Various Clauses
	Dropping a User
	Logging into from the Command Line 409 Sql * Plus ���

	Appendix C Reference to Commands SQL*Plus
	Editing Commands Sql * Plus
	File-related Commands Sql * Plus

	Appendix D Object Orientation �������������������������������������
	An Object
	Sql Queries for Objects
	Retrieving Data from an Object Table
	Inserting a Row into an Object Table
	Updating an Object
	Deleting Rows from on Object Table

	Appendix E What’s New in Oracle9i Sql and Pl/sql? ���
	New Features in Sql
	New Features in Pl/sql

	Appendix F Additional References ��
	Web Sites
	Books and Other Published Material

	Index �������������

